Initial Kinetics of Copper Oxidation in Different Oxidizing Atmospheres as Studied by In Situ UHV-TEM

2000 ◽  
Vol 6 (S2) ◽  
pp. 42-43
Author(s):  
Mridula D. Bharadwaj ◽  
Lori Tropia ◽  
Murray Gibson ◽  
Judith C. Yang

It is of fundamental and practical interest to understand the oxidation process since a desirable property for metals is resistance to corrosion. But there is a wide gap between information provided by surface science methods and that provided by bulk oxidation studies. The former have mainly examined the adsorption of ∼ 1 ML of oxygen on the metal surface, where as both low and high temperature bulk oxidation studies have mainly focused on the growth of an oxide layer at the later stages of oxidation.We are probing the initial oxidation stage of a model metal system by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM) in order to gain insights into the initial kinetics of oxidation. We have previously shown that the growth mechanism of the cuprous oxide is initially dominated by oxygen surface diffision.

2001 ◽  
Vol 7 (S2) ◽  
pp. 1274-1275
Author(s):  
Guang-Wen Zhou ◽  
Mridula D.Bharadwaj ◽  
Judith C.Yang

In the study of metal oxidation, there is a wide gap between information provided by surface science methods and that provided by bulk oxidation studies. The former have mostly examined the adsorption of up to ∽1 monolayer (ML) of oxygen on the metal surface, where as both low and high temperature bulk oxidation studies have mainly focused on the growth of an oxide layer at the later stages of oxidation. Hence, we are visualizing the initial oxidation stages of a model metal system by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM), where the surfaces are atomically clean, in order to gain new understanding of these ambiguous stages of oxidation. We have previously studied the growth of Cu2O islands during initial oxidation of Cu(100) film. We are presently investigating the initial stages of Cu(110) oxidation, from 10−4 Torr O2 to atmospheric pressures and temperature range from room temperature to 700 °C.


2001 ◽  
Vol 7 (6) ◽  
pp. 486-493 ◽  
Author(s):  
Judith C. Yang ◽  
Mridula D. Bharadwaj ◽  
Guangwen Zhou ◽  
Lori Tropia

AbstractWe review our studies of the initial oxidation stages of Cu(001) thin films as investigated by in situ ultra-high vacuum transmission electron microscopy. We present our observations of surface reconstruction and the nucleation to coalescence of copper oxide during in situ oxidation in O2. We have proposed a semi-quantitative model, where oxygen surface diffusion is the dominant mechanism of the initial oxidation stages of Cu. We have also investigated the effect of water vapor on copper oxidation. We have observed that the presence of water vapor in the oxidizing atmosphere retards the rate of Cu oxidation and Cu2O is reduced when exposed directly to steam.


1999 ◽  
Vol 5 (S2) ◽  
pp. 132-133
Author(s):  
J. C. Yang ◽  
M Yeadon ◽  
B. Kolasa ◽  
J. M. Gibson

In this proceedings, we present a review of our experimental results of our investigations of the mechanisms of the initial stages of copper oxidation. We examined the initial stages of Cu(001) oxidation and reduction by in situ ultra-high vacuum (UHV) transmission, electron microscopy (TEM). We observed surface reconstruction and nucleation and growth of copper oxide islands. We have examined the oxidation processes from oxygen partial pressures of 10-5 torr to atmospheric pressures and temperatures from 25°C to 600°C, in order to gain fundamental insights into this important gas-metal reaction.Fundamental knowledge of gas-metal reactions, in particular oxidation, is important for a wide variety of materials science fields, such as dry corrosion, catalysis, as well as some thin film growth, such as ferroelectrics. However, there is a wide gap between information provided by surface science methods and that provided by bulk oxidation studies. The former have mostly examined the adsorption of up to ˜1ML of oxygen on the metal surface.


Author(s):  
Michael T. Marshall ◽  
Xianghong Tong ◽  
J. Murray Gibson

We have modified a JEOL 2000EX Transmission Electron Microscope (TEM) to allow in-situ ultra-high vacuum (UHV) surface science experiments as well as transmission electron diffraction and imaging. Our goal is to support research in the areas of in-situ film growth, oxidation, and etching on semiconducter surfaces and, hence, gain fundamental insight of the structural components involved with these processes. The large volume chamber needed for such experiments limits the resolution to about 30 Å, primarily due to electron optics. Figure 1 shows the standard JEOL 2000EX TEM. The UHV chamber in figure 2 replaces the specimen area of the TEM, as shown in figure 3. The chamber is outfitted with Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), Residual Gas Analyzer (RGA), gas dosing, and evaporation sources. Reflection Electron Microscopy (REM) is also possible. This instrument is referred to as SHEBA (Surface High-energy Electron Beam Apparatus).The UHV chamber measures 800 mm in diameter and 400 mm in height. JEOL provided adapter flanges for the column.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Li Sun ◽  
John E. Pearson ◽  
Judith C. Yang

AbstractThe nucleation and growth of Cu2O and NiO islands due to oxidation of Cu-24%Ni(001) films were monitored at various temperatures by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands were observed to form with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. Similar to Cu oxidation, the cross-sectional area growth rate of the oxide island is linear indicating oxygen surface diffusion is the primary mechanism of oxide growth.


2005 ◽  
Vol 20 (7) ◽  
pp. 1684-1694 ◽  
Author(s):  
Guangwen Zhou ◽  
Judith C. Yang

The initial oxidation stages of Cu(100), (110), and (111) surfaces have been investigated by using in situ ultra-high-vacuum transmission electron microscopy (TEM) techniques to visualize the nucleation and growth of oxide islands. The kinetic data on the nucleation and growth of oxide islands shows a highly enhanced initial oxidation rate on the Cu(110) surface as compared with Cu(100), and it is found that the dominant mechanism for the nucleation and growth is oxygen surface diffusion in the oxidation of Cu(100) and (110). The oxidation of Cu(111) shows a dramatically different behavior from that of the other two orientations, and the in situ TEM observation reveals that the initial stages of Cu(111) oxidation are dominated by the nucleation of oxide islands at temperatures lower than 550 °C, and are dominated by two-dimensional oxide growth at temperatures higher than 550 °C. This dependence of the oxidation behavior on the crystal orientation and temperature is attributed to the structures of the oxygen-chemisorbed layer, oxygen surface diffusion, surface energy, and the interfacial strain energy.


1999 ◽  
Vol 589 ◽  
Author(s):  
Mridula D. Bharadwaj ◽  
Anu Gupta ◽  
J. Murray Gibson ◽  
Judith C. Yang

AbstractEffect of moisture on the oxidation of copper was studied using in situ UHV-TEM. The ultra high vacuum condition is required for minimum contamination effects. The initial observations show that the water vapor reduces the oxide as well as reduces the rate of oxidation if both oxygen gas and water vapor are simultaneously used. Based on these observations, we have speculated on the role of moisture in the solid state reactions involved in copper oxidation


2005 ◽  
Vol 20 (7) ◽  
pp. 1910-1917 ◽  
Author(s):  
L. Sun ◽  
J.C. Yang

The nucleation and growth of Cu2O islands due to Cu(100) oxidation at temperatures from 200 to 350 °C have been observed by in situ ultra-high-vacuum transmission electron microscopy. For this temperature range, epitaxial Cu2O islands form a triangular shape with rounded edges when Cu(100) is exposed to dry oxygen at 5 × 10−4 Torr in situ. Our initial analysis on the nucleation and growth of these three-dimensional Cu2O islands agrees well with the heteroepitaxial model of surface diffusion of oxygen.


Sign in / Sign up

Export Citation Format

Share Document