Energy-Filtering Techniques for Thick Samples

2000 ◽  
Vol 6 (S2) ◽  
pp. 166-167
Author(s):  
B. Kabius ◽  
V. Seybold ◽  
S. Hiller ◽  
A. Rilk ◽  
E. Zellmann ◽  
...  

Imaging of sample regions with a thickness significantly larger than the extinction length and strong thickness variations introduces two major problems for transmission electron microscopy (TEM) : (i) inelastic scattering increases the energy width of the transmitted electrons and therefore the resolution decreases (ii) the contrast differences caused by thickness variations can be higher than the dynamic range of the detector system.Both problems can be solved by using energy filtering techniques. The advantage here is that for energy filtered imaging the resolution limit is not determined by the sample thickness but by the width of the energy selection aperture. Fig. 1 shows three envelope functions of the temporal coherence calculated for different values of the energy width. The functions were plotted for an acceleration voltage of 200 kV and a high voltage stability of 2 ppm.

Author(s):  
M. Talianker ◽  
D.G. Brandon

A new specimen preparation technique for visualizing macromolecules by conventional transmission electron microscopy has been developed. In this technique the biopolymer-molecule is embedded in a thin monocrystalline gold foil. Such embedding can be performed in the following way: the biopolymer is deposited on an epitaxially-grown thin single-crystal gold film. The molecule is then occluded by further epitaxial growth. In such an epitaxial sandwich an occluded molecule is expected to behave as a crystal-lattice defect and give rise to contrast in the electron microscope.The resolution of the method should be limited only by the precision with which the epitaxially grown gold reflects the details of the molecular structure and, in favorable cases, can approach the lattice resolution limit.In order to estimate the strength of the contrast due to the void-effect arising from occlusion of the DNA-molecule in a gold crystal some calculations were performed.


Author(s):  
J W Steeds

That the techniques of convergent beam electron diffraction (CBED) are now widely practised is evident, both from the way in which they feature in the sale of new transmission electron microscopes (TEMs) and from the frequency with which the results appear in the literature: new phases of high temperature superconductors is a case in point. The arrival of a new generation of TEMs operating with coherent sources at 200-300kV opens up a number of new possibilities.First, there is the possibility of quantitative work of very high accuracy. The small probe will essentially eliminate thickness or orientation averaging and this, together with efficient energy filtering by a doubly-dispersive electron energy loss spectrometer, will yield results of unsurpassed quality. The Bloch wave formulation of electron diffraction has proved itself an effective and efficient method of interpreting the data. The treatment of absorption in these calculations has recently been improved with the result that <100> HOLZ polarity determinations can now be performed on III-V and II-VI semiconductors.


Author(s):  
L. D. Peachey ◽  
J. P. Heath ◽  
G. Lamprecht

Biological specimens of cells and tissues generally are considerably thicker than ideal for high resolution transmission electron microscopy. Actual image resolution achieved is limited by chromatic aberration in the image forming electron lenses combined with significant energy loss in the electron beam due to inelastic scattering in the specimen. Increased accelerating voltages (HVEM, IVEM) have been used to reduce the adverse effects of chromatic aberration by decreasing the electron scattering cross-section of the elements in the specimen and by increasing the incident electron energy.


2011 ◽  
Vol 17 (S2) ◽  
pp. 790-791
Author(s):  
M Watanabe ◽  
F Allen

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


1980 ◽  
Vol 2 ◽  
Author(s):  
Fernando A. Ponce

ABSTRACTThe structure of the silicon-sapphire interface of CVD silicon on a (1102) sapphire substrate has been studied in crøss section by high resolution transmission electron microscopy. Multibeam images of the interface region have been obtained where both the silicon and sapphire lattices are directly resolved. The interface is observed to be planar and abrupt to the instrument resolution limit of 3 Å. No interfacial phase is evident. Defects are inhomogeneously distributed at the interface: relatively defect-free regions are observed in the silicon layer in addition to regions with high concentration of defects.


2012 ◽  
Vol 48 (9) ◽  
pp. 322-330 ◽  
Author(s):  
Shin HORIUTI ◽  
Takeshi HANADA ◽  
Takayuki MIYAMAE ◽  
Tadae YAMANAKA ◽  
Kogoro OOSUMI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document