Contrast from epitaxially sandwiched macromolecules

Author(s):  
M. Talianker ◽  
D.G. Brandon

A new specimen preparation technique for visualizing macromolecules by conventional transmission electron microscopy has been developed. In this technique the biopolymer-molecule is embedded in a thin monocrystalline gold foil. Such embedding can be performed in the following way: the biopolymer is deposited on an epitaxially-grown thin single-crystal gold film. The molecule is then occluded by further epitaxial growth. In such an epitaxial sandwich an occluded molecule is expected to behave as a crystal-lattice defect and give rise to contrast in the electron microscope.The resolution of the method should be limited only by the precision with which the epitaxially grown gold reflects the details of the molecular structure and, in favorable cases, can approach the lattice resolution limit.In order to estimate the strength of the contrast due to the void-effect arising from occlusion of the DNA-molecule in a gold crystal some calculations were performed.

Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


2003 ◽  
Vol 11 (1) ◽  
pp. 29-32 ◽  
Author(s):  
R. Beanland

AbstractCross-section transmission electron microscope (TEM) specimen preparation of Ill-V materials using conventional methods can be a painful and time-consuming activity, with a day or more from receipt of a sample to examination in the TEM being the norm. This article describes the cross-section TEM specimen preparation technique used at Bookham Caswell. The usual time from start to finish is <1 hour. Up to 10 samples can be prepared at once, depending upon sample type. Most of the tools used are widely available and inexpensive, making the technique ideal for use in institutions with limited resources.


1999 ◽  
Vol 5 (S2) ◽  
pp. 908-909
Author(s):  
J.L. Drown-MacDonald ◽  
B.I. Prenitzer ◽  
T.L. Shofner ◽  
L.A. Giannuzzi

Focused Ion Beam (FIB) specimen preparation for both scanning and transmission electron microscopy (SEM and TEM respectively) has seen an increase in usage over the past few years. The advantage to the FIB is that site specific cross sections (or plan view sections) may be fabricated quickly and reproducibly from numerous types of materials using a finely focused beam of Ga+ ions [1,2]. It was demonstrated by Prenitzer et al. that TEM specimens may be acquired from individual Zn powder particles by employing the FIB LO specimen preparation technique [3]. In this paper, we use the FIB LO technique to prepare TEM specimens from Mount Saint Helens volcanic ash.Volcanic ash from Mount Saint Helens was obtained at the Microscopy and Microanalysis 1998 meeting in Atlanta. TEM analysis of the ash was performed using the FIB lift out technique [1]. Ash powders were dusted onto an SEM sample stud that had been coated with silver paint.


2013 ◽  
Vol 753 ◽  
pp. 3-6 ◽  
Author(s):  
Hideki Matsushima ◽  
Toshiaki Suzuki ◽  
Takeshi Nokuo

Functions of an observation and an analysis in electron microscope, such as scanning electron microscope (SEM) or transmission electron microscope (TEM) are indispensable to evaluate advanced materials. Therefore a specimen preparation technique, that is a front end of the electron microscopy, has become highly important, thus a choice of it affects a result of the evaluation. The authors was combined a cooling stage in FIB and applied it for evaluation of metals with low melting point. The electron microscopic evaluation of Lead solder, Indium, Tin and Bismuth, metals with low melting point, has been always discussed if the results represent the actual physics. Metals with low melting point are heat sensitive materials, so the comparison of cross-sectioning with room and low temperature, it can be said that low temperature cross-sectioning has less effect and keeps the actual physics of the sample. In this paper, some knowledge from comparisons of cross-sectioning with room and low temperature for metals with low melting point are reported.


Author(s):  
M. Okihara ◽  
H. Tanaka ◽  
N. Hirashita ◽  
T. Nakamura ◽  
H. Okada ◽  
...  

Abstract Pin-point (specific area) planar transmission electron microscopy (TEM) analysis has been improved to study process-induced defects in recent very large scale integrated (VLSI) devices. The specimens are prepared by a combination of marking failure sites with focused ion beam (FTB) equipment and planar TEM specimen preparation technique. This method provides not only planar observation of localized failures with an accurate observation with high positioning accuracy but also wide range of observable area which is feasible to carry out some application techniques associated with TEM. In particular, it is found to be a powerful method to identify the nature of crystalline defects which cause the failures. This work presents the detailed procedure and demonstrates its successful applicability via studying a leaky bipolar transistor in 0.5μm BiCMOS devices (one failure of more than 4500 transistors). The results clarify the presence of stacking faults, formed during epitaxial growth, between collector and emitter regions in the specific transistor with resistive collector-emitter leakage current.


Sign in / Sign up

Export Citation Format

Share Document