Development of a 1-MV Field-Emission Electron Microscope III. Electron Optical Design and Development of Field-Emission Electron Gun

2000 ◽  
Vol 6 (S2) ◽  
pp. 1142-1143
Author(s):  
Takaho Yoshida ◽  
Takeshi Kawasaki ◽  
Junji Endo ◽  
Tadao Furutsu ◽  
Isao Matsui ◽  
...  

Bright and coherent electron beams have been opening new frontiers in science and technology. So far, we have developed several field-emission transmission electron microscopes (FE-TEM) with increasing accelerating voltages to provide higher beam brightness. By using a 200-kV FE-TEM and electron holography techniques, we directly confirmed the Aharonov-Bohm effect. A 350-kV FE-TEM equipped with a low-temperature specimen stage enabled us to observe moving vortices in superconductors.2 Most Recently, we have developed a new 1-MV FE-TEM with a newly designed FE gun to obtain an even brighter and more coherent electron beam.Electron beam brightness, Br, defined in Figure 1, is suitable for measuring the performance of electron guns, since both lens aberrations and mechanical/electrical vibrations contribute to a decrease in beam brightness, and beam coherency is proportional to (Br)1/2. Therefore, we optimized design of the illuminating system and its operation by maximizing the electron beam brightness.

Author(s):  
R. Plass ◽  
L. D. Marks

With the advent of reliable cold field emission transmission electron microscopes there is substantial interest in using the amplitude and phase information recorded in electron holograms to optically or numerically correct for the coherent aberrations of transmission electron microscopes. However electron holography cannot compensate for incoherent aberrations. The derivation of the contrast transfer function for off axis electron holography in this paper shows there is no fundamental improvement in resolution for electron holography over conventional transmission electron microscopy.Evaluating the contrast transfer function involves mathematically following an electron beam through a field emission electron microscope set up for off axis electron holography. Due to the high coherence of the field emission electron beam coherent aberrations caused by the pre-specimen beam focusing system must be accounted for. Starting with a spacial frequency distribution, C(v), for the electron beam leaving the gun, the electron beam is limited by the condenser aperture and coherently aberrated by the condenser lens and objective pre-field as it passes to the specimen region:


Author(s):  
A. Tonomura ◽  
T. Matsuda ◽  
T. Komoda

Although the feasibility of electron holography has been verified by several authors, it has not yet been put to practical use. This is because of the lack of a coherent electron source, such as optical laser. In practice, the number of interference fringes produced with a biprism is 200 at most, the exception being one dimensional cases. Off-axis holography requires 5,000∼100,000 interference fringes. Therefore, the useful application of electron holography in higher resolution and phase contrast electron microscopy hinges on development of a coherent electron source capable of producing 5,000 fringes or more.To realize a coherent electron source, a 100 kV field emission electron gun was developed and attached to an electron microscope. In designing the microscope,special care was taken in the column and electric supply. This was done to minimize movement of the small beam spot, which is easily disturbed from outside, so as to maintain the field emission electron beam.


2000 ◽  
Vol 6 (S2) ◽  
pp. 1138-1139
Author(s):  
I. Matsui ◽  
T. Katsuta ◽  
T. Kawasaki ◽  
S. Hayashi ◽  
T. Furutsu ◽  
...  

We have developed 100-kV, 200-kV, and 350-kV cold-field-emission transmission electron microscopes (FE-TEMs) successively up to this time. Using these instruments, we have been studying the magnetic structure of materials, high-resolution imaging by electron holography, and dynamic observation of the vortex in superconductors by Lorentz microscopy. To make more progress in our research, we need a better electron beam in terms of coherency, beam brightness, and penetration. Here, we report a new lMV-cold-field-emission transmission electron microscope we have developed. Historically, the pioneering projects on a lMV-field-emission scanning transmission electron microscope (FE-STEM) (Zeitler and Crewe, 1974) and a 1.6MV FE-STEM (Jouffrey et al., 1984) have been reported. In 1988, Maruse and Shimoyama obtained a lMV-field-emission beam using their 1.25MV-STEM connected to a field-emission gun. Since then, continuous improvements in beam brightness has been made.The target specifications of our 1 MV-cold-field-emission TEM (H-1000FT) are as follows: Acceleration voltage: 1MV, high-voltage stability :


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Michał Krysztof

AbstractThis article presents a field-emission electron gun intended for use in a MEMS (microelectromechanical system) electron microscope. Its fabrication process follows the technology of a miniature device under development built from silicon electrodes and glass spacers. The electron gun contains a silicon cathode with a single very sharp protrusion and a bundle of disordered CNTs deposited on its end (called a sharp silicon/CNT cathode). It was tested in diode and triode configurations. For the diode configuration, a low threshold voltage <1000 V and a high emission current that reached 90 µA were obtained. After 30 min of operation at 900 V, the emission current decreased to 1.6 µA and was stable for at least 40 min, with RMS fluctuation in the anode current lower than 10%. The electron beam spot of the source was observed on the phosphor screen. In the diode configuration, the spot size was the same as the emission area (~10 µm), which is a satisfactory result. In the triode configuration, an extraction electrode (gate) control function was reported. The gate limited the emission current and elongated the lifetime of the gun when the current limit was set. Moreover, the electron beam current fluctuations at the anode could be reduced to ~1% by using a feedback loop circuit that controls the gate voltage, regulating the anode current. The developed sharp silicon/CNT cathodes were used to test the MEMS electron source demonstrator, a key component of the MEMS electron microscope, operating under atmospheric pressure conditions. Cathodoluminescence of the phosphor layer (ZnS:Ag) deposited on the thin silicon nitride membrane (anode) was observed.


Author(s):  
B.G. Frost ◽  
D.C. Joy ◽  
E. Völkl ◽  
L.F. Allard

In order to align an electron microscope for low magnification holography we usually completely switch off the objective lens and image the sample by the first intermediate lens. In addition, to achieve a highly coherent electron beam we highly excite the condensor lens resulting in a divergent illumination of the sample and the intermediate lens. Now negatively biasing the fiber of a Möllenstedt type biprism placed between the first an second intermediate lenses of our Hitachi HF-2000 field emission electron microscope creates two virtual sources below the back focal plane of the first intermediate lens. These two sources are necessary to form off-axis holograms. Slightly exciting the objective lens and still imaging the sample by the first intermediate lens results in two major changes in our holograms.First: Due to an electron beam less divergent or even convergent illuminating the first intermediate lens when exciting the objective lens (compare Fig. 1 to Fig.2) the angle β at which object wave and reference wave are superimposed decreases.


Author(s):  
J. Endo ◽  
T. Kawasaki ◽  
T. Masuda ◽  
A. Tonomura

A field-emission electron gun is one of the most epoch-making technologies in an electron microscopic world. In a transmission electron microscope, a high brightness of this beam has been effectively employed for electron-holographic measurements, though the value is not still high enough. Development of a higher brightness beam will promise to open up unattained application possibilities of electron holography such as high resolution and high sensitivity interferometry.We developed the field emission electron microscope for electron holographic applications. Special attentions were paid for high brightness, large beam current and easy operation. Figure 1 is a schematic diagram of the electron gun. In order not to deteriorate the original high-brightness feature of the beam by the aberrations in the gun and the condenser lenses, a magnetic lens was installed between the tip and the extraction anode so that the total aberration effect might be minimized. Field emitted electron beam is converged by the magnetic and the electrostatic lenses, and accelerated in a ten-stage accelerator which is made of porcelain.


Author(s):  
Y. Harada ◽  
T. Goto ◽  
H. Koike ◽  
T. Someya

Since phase contrasts of STEM images, that is, Fresnel diffraction fringes or lattice images, manifest themselves in field emission scanning microscopy, the mechanism for image formation in the STEM mode has been investigated and compared with that in CTEM mode, resulting in the theory of reciprocity. It reveals that contrast in STEM images exhibits the same properties as contrast in CTEM images. However, it appears that the validity of the reciprocity theory, especially on the details of phase contrast, has not yet been fully proven by the experiments. In this work, we shall investigate the phase contrast images obtained in both the STEM and CTEM modes of a field emission microscope (100kV), and evaluate the validity of the reciprocity theory by comparing the experimental results.


Author(s):  
G. Lehmpfuhl ◽  
P. J. Smith

Specimens being observed with electron-beam instruments are subject to contamination, which is due to polymerization of hydrocarbon molecules by the beam. This effect becomes more important as the size of the beam is reduced. In convergent-beam studies with a beam diameter of 100 Å, contamination was observed to grow on samples at very high rates. Within a few seconds needles began forming under the beam on both the top and the underside of the sample, at growth rates of 400-500 Å/s, severely limiting the time available for observation. Such contamination could cause serious difficulty in examining a sample with the new scanning transmission electron microscopes, in which the beam is focused to a few angstroms.We have been able to reduce the rate of contamination buildup by a combination of methods: placing an anticontamination cold trap in the sample region, preheating the sample before observation, and irradiating the sample with a large beam before observing it with a small beam.


Author(s):  
George Christov ◽  
Bolivar J. Lloyd

A new high intensity grid cap has been designed for the RCA-EMU-3 electron microscope. Various parameters of the new grid cap were investigated to determine its characteristics. The increase in illumination produced provides ease of focusing on the fluorescent screen at magnifications from 1500 to 50,000 times using an accelerating voltage of 50 KV.The EMU-3 type electron gun assembly consists of a V-shaped tungsten filament for a cathode with a thin metal threaded cathode shield and an anode with a central aperture to permit the beam to course the length of the column. The cathode shield is negatively biased at a potential of several hundred volts with respect to the filament. The electron beam is formed by electrons emitted from the tip of the filament which pass through an aperture of 0.1 inch diameter in the cap and then it is accelerated by the negative high voltage through a 0.625 inch diameter aperture in the anode which is at ground potential.


Sign in / Sign up

Export Citation Format

Share Document