scholarly journals Image Formation Based on Atomic Resolution Core-loss Electron Energy Loss Spectroscopy

2006 ◽  
Vol 12 (S02) ◽  
pp. 1138-1139
Author(s):  
MP Oxley ◽  
K van Benthem ◽  
M Varela ◽  
SD Findlay ◽  
LJ Allen ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006

Author(s):  
R.D. Leapman ◽  
C.R. Swyt

The intensity of a characteristic electron energy loss spectroscopy (EELS) image does not, in general, directly reflect the elemental concentration. In fact, the raw core loss image can give a misleading impression of the elemental distribution. This is because the measured core edge signal depends on the amount of plural scattering which can vary significantly from region to region in a sample. Here, we show how the method for quantifying spectra due to Egerton et al. can be extended to maps.


Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


2012 ◽  
Vol 18 (4) ◽  
pp. 667-675 ◽  
Author(s):  
Paul Cueva ◽  
Robert Hovden ◽  
Julia A. Mundy ◽  
Huolin L. Xin ◽  
David A. Muller

AbstractThe high beam current and subangstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopy (EELS) mapping with atomic resolution. These spectral maps are often dose limited and spatially oversampled, leading to low counts/channel and are thus highly sensitive to errors in background estimation. However, by taking advantage of redundancy in the dataset map, one can improve background estimation and increase chemical sensitivity. We consider two such approaches—linear combination of power laws and local background averaging—that reduce background error and improve signal extraction. Principal component analysis (PCA) can also be used to analyze spectrum images, but the poor peak-to-background ratio in EELS can lead to serious artifacts if raw EELS data are PCA filtered. We identify common artifacts and discuss alternative approaches. These algorithms are implemented within the Cornell Spectrum Imager, an open source software package for spectroscopic analysis.


1999 ◽  
Vol 5 (6) ◽  
pp. 437-444 ◽  
Author(s):  
Stephen B. Rice ◽  
Hazel H. Bales ◽  
John R. Roth ◽  
Allen L. Whiteside

Abstract: A set of uranium compound particles relevant to contaminated soils and other environmental concerns surrounding uranium bioavailability were studied by electron energy-loss spectroscopy (EELS). Core-loss EELS results suggest that uranium 4+ compounds have an energy loss resolvable from 6+ compounds. Shoulders on the uranium O4,5 edge further distinguish UO2 from UF4. Low-loss characteristics distinguish carbon-free uranium oxide specimens on holey substrates. In the presence of carbon, correction techniques must be applied. Uranium oxides, fluorides, and minerals show a tendency toward reduction of uranium toward 4+ under the beam. The electron dose required to achieve the transformation from 6+ to 4+ is more severe than that usually required to obtain satisfactory spectra, but the possibility for reduction should be considered. The conditions for low-loss analysis need not be as vigorous as those for core losses, and can be done without altering the valence of most oxides.


2000 ◽  
Vol 6 (S2) ◽  
pp. 186-187
Author(s):  
D. A. Pankhurst ◽  
G. A. Botton ◽  
C. J. Humphreys

It has been demonstrated that electron energy loss spectrometry (EELS) can be used to probe the electronic structure of materials on the near-atomic scale. The electron energy loss near edge structure (ELNES) observed after the onset of a core edge reflects a weighted local density of final states to which core electrons are excited by fast incident electrons. Lately ‘atomic resolution EELS’ and ‘column-by-column spectroscopy’ have become familiar themes amongst the EELS community. The next generation of STEMs, equipped with spherical aberration (Cs) correctors and electron beam monochromators, will have sufficient spatial and energy resolution, along with the superior signal to noise required, to detect small changes in the ELNES from atomic column to atomic column.Core loss ELNES provides information about unoccupied states, but the structure observed in spectra is sensitive to changes in the underlying occupied states, and thus to the bonding in the material.


2009 ◽  
Vol 95 (19) ◽  
pp. 192902 ◽  
Author(s):  
L. Gunawan ◽  
S. Lazar ◽  
O. Gautreau ◽  
C. Harnagea ◽  
A. Pignolet ◽  
...  

2019 ◽  
Vol 25 (S2) ◽  
pp. 574-575
Author(s):  
H. G. Brown ◽  
S. D. Findlay ◽  
L. J. Allen ◽  
J. Ciston ◽  
C. Ophus

2001 ◽  
Vol 693 ◽  
Author(s):  
C. J. Fall ◽  
R. Jones ◽  
P. R. Briddon ◽  
A. T. Blumenau ◽  
T. Frauenheim ◽  
...  

AbstractThe electronic structure of dislocations in GaN is controversial. Several experimental techniques such as carrier mobility studies and cathodoluminescence experiments have indicated that dislocations are charged while theoretical studies point to intrinsic states and/or point defect accumulation along the core as a source of electrical activity. Electron Energy Loss Spectroscopy (EELS) studies have the ability to probe the electronic structure of extended defects. Here we report rst principles calculations of the EELS spectrum applied to edge dislocations in GaN. It is found that the electrostatic potential at N atoms in the vicinity of the dislocation varies by the order of a volt and casts doubt on any simple interpretation of core loss spectroscopy. On the other hand, low loss spectroscopy leads directly to detailed information about any gap states. The low loss spectrum obtained by the theory is in good agreement with recent experimental work and indicates that threading dislocations in p-type GaN possess acceptor levels in the upper half of the gap.


Sign in / Sign up

Export Citation Format

Share Document