scholarly journals Transmission Electron Diffraction From Nanoparticles, Nanowires and Thin Films in an SEM With Conventional EBSD Equipment

2010 ◽  
Vol 16 (S2) ◽  
pp. 1742-1743 ◽  
Author(s):  
RH Geiss ◽  
RR Keller ◽  
DT Read

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.

Author(s):  
R. H. Geiss

The theory and practical limitations of micro area scanning transmission electron diffraction (MASTED) will be presented. It has been demonstrated that MASTED patterns of metallic thin films from areas as small as 30 Åin diameter may be obtained with the standard STEM unit available for the Philips 301 TEM. The key to the successful application of MASTED to very small area diffraction is the proper use of the electron optics of the STEM unit. First the objective lens current must be adjusted such that the image of the C2 aperture is quasi-stationary under the action of the rocking beam (obtained with 40-80-160 SEM settings of the P301). Second, the sample must be elevated to coincide with the C2 aperture image and its image also be quasi-stationary. This sample height adjustment must be entirely mechanical after the objective lens current has been fixed in the first step.


Author(s):  
R.A. Ploc ◽  
G.H. Keech

An unambiguous analysis of transmission electron diffraction effects requires two samplings of the reciprocal lattice (RL). However, extracting definitive information from the patterns is difficult even for a general orthorhombic case. The usual procedure has been to deduce the approximate variables controlling the formation of the patterns from qualitative observations. Our present purpose is to illustrate two applications of a computer programme written for the analysis of transmission, selected area diffraction (SAD) patterns; the studies of RL spot shapes and epitaxy.When a specimen contains fine structure the RL spots become complex shapes with extensions in one or more directions. If the number and directions of these extensions can be estimated from an SAD pattern the exact spot shape can be determined by a series of refinements of the computer input data.


1990 ◽  
Vol 202 ◽  
Author(s):  
J. A. Barnard ◽  
E. Haftek ◽  
A. Waknis ◽  
M. Tan

ABSTRACTThe growth and microstructural evolution of Al/Ni and Ni/AI bilayer thin films have been investigated as a function of Al and Ni layer thickness and thermal treatment by transmission electron microscopy. Studies were also made of Al and Ni single layers of varying thickness. All films were grown by dc magnetron sputtering using carbon coated Cu TEM grids as substrates. For the bilayers, the Al thickness was fixed at either 3.5 or 7.0 nm while the Ni thickness was varied systematically from 3.2 to 12.8 nm. Deposition sequence significantly influenced bilayer microstructure even in as-deposited samples. Al/Ni bilayers generally exhibited a finer microstructure than Ni/AI. In the 3.5 nm Al/Ni bilayers no conclusive electron diffraction evidence was found for elemental Al while for the reverse sequence both Al and NiAl3 diffraction rings were found. In the 7.0 nm Al/Ni bilayers diffraction rings due to Al were observed. The reverse sequence again produced both Al and NiAl3 diffraction rings. Interestingly, diffraction rings due to the Ni layers were found for all samples but were consistently measured at positions corresponding to a 2.5–3.5% increase in interplanar spacing. Annealing at 385°C produced evidence for generalized grain growth and strong accentuation of the electron diffraction rings due to the NiAl3 phase. Again, deposition significantly influenced annealed bilayer microstructure. For the Al/Ni sequence annealing produced polycrystalline N1AI3 island-like structures, while for Ni/AI bilayers, annealing promoted the growth of small NiAl3 crystals uniformly distributed in the film.


1983 ◽  
Vol 29 ◽  
Author(s):  
M. I. Birjega ◽  
C. A. Constantin ◽  
M. Dinescu ◽  
I. Th. Florescu ◽  
I. N. Mihailescu ◽  
...  

ABSTRACTThe crystallization and oxidation processes of thin, free-standing (FS), sputtered Cr films under the action of cw CO2 laser irradiation were studied by transmission electron microscopy (TEM) and transmission electron diffraction (TED). The crystallization is induced at power densities above 28.65 W cm−2, dwell time of 1 s, and the oxidation at power densities of 48.1 W cm−2 and longer dwell times.


2010 ◽  
Vol 56 ◽  
pp. 317-340 ◽  
Author(s):  
Bruce A. Joyce ◽  
Michael J. Stowell

Donald William (Don) Pashley was one of the most innovative materials scientists of his generation. He was distinguished for his electron diffraction and transmission electron microscope studies of epitaxial thin films, especially for in situ investigations, work that contributed enormously to our understanding of film growth processes. He pioneered the use of moiré patterns to reveal dislocations and other defects. He also made important contributions to long-range disorder effects on semiconductor surfaces and to the structure of low-dimensional semiconductor systems.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1039-1040
Author(s):  
R. Plass ◽  
K. Egan ◽  
C. Collazo-Davila ◽  
D. Grozea ◽  
E. Landree ◽  
...  

It has long been thought that (111) surfaces of rock salt oxides microfacet to neutral surfaces upon annealing because of the very large energies involved in bulk terminating a layer of like ions. However in a recent reflection electron microscopy (REM) study Gajdardziska-Josifovska et al. found that MgO(lll) surfaces annealed in flowing oxygen furnaces at 1500°C not only did not microfacet, but displayed a √3×√3R30° surface periodicity that was stable in air. To determine the structure of this unusually stable surface MgO (111) transmission electron microscopy (TEM) samples were annealed in a vacuum furnace in the present study and their transmission electron diffraction (TED) patterns were analyzed with direct phasing methods.The TEM samples were prepared by orienting a MgO single crystal and sawing lmm wafers along a (111) plane. Disk samples were then ultrasonically drilled, dimpled, mechanically polished and/or hot nitric acid etched, and milled with 5 KeV Ar+ ions.


Sign in / Sign up

Export Citation Format

Share Document