scholarly journals Donald William Pashley. 21 April 1927 — 16 May 2009

2010 ◽  
Vol 56 ◽  
pp. 317-340 ◽  
Author(s):  
Bruce A. Joyce ◽  
Michael J. Stowell

Donald William (Don) Pashley was one of the most innovative materials scientists of his generation. He was distinguished for his electron diffraction and transmission electron microscope studies of epitaxial thin films, especially for in situ investigations, work that contributed enormously to our understanding of film growth processes. He pioneered the use of moiré patterns to reveal dislocations and other defects. He also made important contributions to long-range disorder effects on semiconductor surfaces and to the structure of low-dimensional semiconductor systems.

Author(s):  
Michael T. Marshall ◽  
Xianghong Tong ◽  
J. Murray Gibson

We have modified a JEOL 2000EX Transmission Electron Microscope (TEM) to allow in-situ ultra-high vacuum (UHV) surface science experiments as well as transmission electron diffraction and imaging. Our goal is to support research in the areas of in-situ film growth, oxidation, and etching on semiconducter surfaces and, hence, gain fundamental insight of the structural components involved with these processes. The large volume chamber needed for such experiments limits the resolution to about 30 Å, primarily due to electron optics. Figure 1 shows the standard JEOL 2000EX TEM. The UHV chamber in figure 2 replaces the specimen area of the TEM, as shown in figure 3. The chamber is outfitted with Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), Residual Gas Analyzer (RGA), gas dosing, and evaporation sources. Reflection Electron Microscopy (REM) is also possible. This instrument is referred to as SHEBA (Surface High-energy Electron Beam Apparatus).The UHV chamber measures 800 mm in diameter and 400 mm in height. JEOL provided adapter flanges for the column.


Author(s):  
H. Rager ◽  
M. Schosnig ◽  
A.K. Schaper ◽  
A. Kutoglu ◽  
W. Treutmann

This paper deals with transmission electron microscope experiments of Ca,Sr-åkermanite solid solutions at temperatures between 100 K and 375 K. The aim of the investigations was to study the compositional and temperature dependence of phase transitions from the normal to the incommensurately modulated structure of(Ca


Author(s):  
K. Yagi ◽  
K. Takayanagi ◽  
K. Kobayashi ◽  
N. Osakabe ◽  
Y. Tanishiro ◽  
...  

Recent advances of UHV techniques, LEED, RHEED and AES, arose a surge of interest on the surface of solids. These techniques reveal structures and chemical compositions at the mono-atomic or mono-molecular level. All of them, however, are devoid of detailed topographic informations, although some efforts to introduce the scanning techniques have been done[l]. Transmission electron microscopy of high resolution should play a complementary role to these techniques. No attempt, however, has been done previously to use it to such a purpose. This was because it was difficult to get and keep clean surfaces in the poor vacuum at 1x10-5 Torr level of the conventional electron microscope.The present paper reports observations of surface phenomena of one or two atomic layer level using a UHV JEM 100B electron microscope (10-8 -10-10Torr), recently developed for insitu thin film growth studies[2]. Atomically flat (111) surfaces of Ag, Pd, Au and Cu were prepared by in- situ deposition at 150-350°C on M0S2, graphite and MgO. Air Cleaved thin films of MoS2 and graphite were preheated to 800°C to get clean surfaces[3].


2013 ◽  
Vol 19 (3) ◽  
pp. 693-697 ◽  
Author(s):  
M. Galceran ◽  
A. Albou ◽  
K. Renard ◽  
M. Coulombier ◽  
P.J. Jacques ◽  
...  

AbstractA new automated crystallographic orientation mapping tool in a transmission electron microscope technique, which is based on pattern matching between every acquired electron diffraction pattern and precalculated templates, has been used for the microstructural characterization of nondeformed and deformed aluminum thin films and twinning-induced plasticity steels. The increased spatial resolution and the use of electron diffraction patterns rather than Kikuchi lines make this tool very appropriate to characterize fine grained and deformed microstructures.


1997 ◽  
Vol 505 ◽  
Author(s):  
Xingtian Cui ◽  
Q. Y Chen ◽  
Yongxiang Guo ◽  
W. K. Chu

ABSTRACTHigh quality YBa2Cu3O7–δ, (YBCO) epitaxial thin films grown on MgO substrate with a strainrelieved SrTiO3 (STO) buffer layer have been investigated by Rutherford backscattering spectrometry (RBS), ion channeling and high resolution cross sectional transmission electron microscopy (XTEM). The in-situ growth of STO buffer layer along with the YBCO films was carried out by pulsed laser ablation. In this work, minimum yield of channeling measurements have shown that a very thin STO buffer layer is sufficient to grow highly crystalline YBCO thin films on MgO substrates. TEM studies showed that the STO layers were strain-relieved by an array of periodic edge dislocations. The YBCO films on STO buffer, as in those grown directly on an STO substrate, evolved from a strained layer to a largely dislocation free area.


1996 ◽  
Vol 441 ◽  
Author(s):  
Jin-Hyo Boo ◽  
Scott A. Ustin ◽  
Wilson Ho ◽  
H. Paul Maruska ◽  
Peter E. Norris ◽  
...  

AbstractCubic SiC thin films have been grown by supersonic jet epitaxy of single molecular precursors on Si(100), Si(111) and Separation by IMplanted OXygen (SIMOX) silicon on insulator (SOI) substrates at temperatures in the range 780 - 1000 °C. Real-time, in situ optical reflectivity was used to monitor the film growth. Films were characterized by ellipsometry, x-ray diffraction (XRD), and transmission electron microscopy (TEM). Monocrystalline, crack-free epitaxial cubic SiC thin films were successfully grown at 830 °C on carbonized Si(111) substrates using supersonic molecular jets of dimethylisopropylsilane, (CH3)2CHSiH(CH3)2, and diethylmethylsilane, (CH3CH2)2SiHCH3. Highly oriented cubic SiC thin films in the [100] direction were obtained on SIMOX(100) at 900 °C with dimethylisopropylsilane and on Si(100) at 1000 °C with diethylmethylsilane. A carbonized Si(100) surface was found to enhance SiC deposition from diethylmethylsilane at a growth temperature of 950 °C.


Sign in / Sign up

Export Citation Format

Share Document