Improvement of Depth Resolution of ADF-SCEM by Deconvolution: Effects of Electron Energy Loss and Chromatic Aberration on Depth Resolution

2012 ◽  
Vol 18 (3) ◽  
pp. 603-611 ◽  
Author(s):  
Xiaobin Zhang ◽  
Masaki Takeguchi ◽  
Ayako Hashimoto ◽  
Kazutaka Mitsuishi ◽  
Meguru Tezuka ◽  
...  

AbstractScanning confocal electron microscopy (SCEM) is a new imaging technique that is capable of depth sectioning with nanometer-scale depth resolution. However, the depth resolution in the optical axis direction (Z) is worse than might be expected on the basis of the vertical electron probe size calculated with the existence of spherical aberration. To investigate the origin of the degradation, the effects of electron energy loss and chromatic aberration on the depth resolution of annular dark-field SCEM were studied through both experiments and computational simulations. The simulation results obtained by taking these two factors into consideration coincided well with those obtained by experiments, which proved that electron energy loss and chromatic aberration cause blurs at the overfocus sides of the Z-direction intensity profiles rather than degrade the depth resolution much. In addition, a deconvolution method using a simulated point spread function, which combined two Gaussian functions, was adopted to process the XZ-slice images obtained both from experiments and simulations. As a result, the blurs induced by energy loss and chromatic aberration were successfully removed, and there was also about 30% improvement in the depth resolution in deconvoluting the experimental XZ-slice image.

2011 ◽  
Vol 675-677 ◽  
pp. 259-262
Author(s):  
X. Zhang ◽  
Masaki Takeguchi ◽  
Ayako Hashimoto ◽  
Kazutaka Mitsuishi ◽  
Masayuki Shimojo

Scanning confocal electron microscopy (SCEM) is a novel technique for threedimensional observation with a nanometer-scale resolution. Annular dark field (ADF) SCEM imaging has been demonstrated to have better depth resolution than bright field (BF) SCEM imaging. However, the depth resolution of ADF-SCEM images is limited by the vertical probe size determined by spherical aberration and convergence angle. Therefore, we attempted to employ a deconvolution image processing method to improve the depth resolution of SCEM images. The result of the deconvolution process for vertically sliced SCEM images showed the improvement in the depth resolution by 35-40%.


Author(s):  
Zhifeng Shao ◽  
A.V. Crewe

For scanning electron microscopes, it is plausible that by lowering the primary electron energy, one can decrease the volume of interaction and improve resolution. As shown by Crewe /1/, at V0 =5kV a 10Å resolution (including non-local effects) is possible. To achieve this, we would need a probe size about 5Å. However, at low voltages, the chromatic aberration becomes the major concern even for field emission sources. In this case, δV/V = 0.1 V/5kV = 2x10-5. As a rough estimate, it has been shown that /2/ the chromatic aberration δC should be less than ⅓ of δ0 the probe size determined by diffraction and spherical aberration in order to neglect its effect. But this did not take into account the distribution of electron energy. We will show that by using a wave optical treatment, the tolerance on the chromatic aberration is much larger than we expected.


2001 ◽  
Vol 7 (S2) ◽  
pp. 344-345
Author(s):  
G. Möbus ◽  
R.E. Dunin-Borkowski ◽  
C.J.D. Hethėrington ◽  
J.L. Hutchison

Introduction:Atomically resolved chemical analysis using techniques such as electron energy loss spectroscopy and annular dark field imaging relies on the ability to form a well-characterised sub-nm electron beam in a FEGTEM/STEM [1-2]. to understand EELS+EDX-signal formation upon propagation of a sub-nm beam through materials we first have to assess precisely the beam intensity distribution in vacuum and find conditions for the best obtainable resolution.Experimental Details:Modern TEM/STEM instruments combine features of both imaging and scanning technology. The beam forming capability approaches closely that for dedicated STEMs, while CCD recording devices allow us to measure the beam profile by direct imaging at magnifications up to 1.5 M. The recording of a “z-section” series through the 3D intensity distribution of the cross-over can therefore be realised by recording of a “condenser focal series”.


2000 ◽  
Vol 6 (S2) ◽  
pp. 186-187
Author(s):  
D. A. Pankhurst ◽  
G. A. Botton ◽  
C. J. Humphreys

It has been demonstrated that electron energy loss spectrometry (EELS) can be used to probe the electronic structure of materials on the near-atomic scale. The electron energy loss near edge structure (ELNES) observed after the onset of a core edge reflects a weighted local density of final states to which core electrons are excited by fast incident electrons. Lately ‘atomic resolution EELS’ and ‘column-by-column spectroscopy’ have become familiar themes amongst the EELS community. The next generation of STEMs, equipped with spherical aberration (Cs) correctors and electron beam monochromators, will have sufficient spatial and energy resolution, along with the superior signal to noise required, to detect small changes in the ELNES from atomic column to atomic column.Core loss ELNES provides information about unoccupied states, but the structure observed in spectra is sensitive to changes in the underlying occupied states, and thus to the bonding in the material.


1999 ◽  
Vol 595 ◽  
Author(s):  
Tyler J. Eustis ◽  
John Silcox ◽  
Michael J. Murphy ◽  
William J. Schaff

AbstractThe presence of oxygen throughout the nominally AlN nucleation layer of a RF assisted MBE grown III-N HEMT was revealed upon examination by Electron Energy Loss Spectroscopy (EELS) in a Scanning Transmission Electron Microscope (STEM). The nucleation layer generates the correct polarity (gallium face) required for producing a piezoelectric induced high mobility two dimensional electron gas at the AlGaN/GaN heterojunction. Only AlN or AlGaN nucleation layers have provided gallium face polarity in RF assisted MBE grown III-N's on sapphire. The sample was grown at Cornell University in a Varian GenII MBE using an EPI Uni-Bulb nitrogen plasma source. The nucleation layer was examined in the Cornell University STEM using Annular Dark Field (ADF) imaging and Parallel Electron Energy Loss Spectroscopy (PEELS). Bright Field TEM reveals a relatively crystallographically sharp interface, while the PEELS reveal a chemically diffuse interface. PEELS of the nitrogen and oxygen K-edges at approximately 5-Angstrom steps across the GaN/AlN/sapphire interfaces reveals the presence of oxygen in the AlN nucleation layer. The gradient suggests that the oxygen has diffused into the nucleation region from the sapphire substrate forming this oxygen containing AlN layer. Based on energy loss near edge structure (ELNES), oxygen is in octahedral interstitial sites in the AlN and Al is both tetrahedrally and octahedrally coordinated in the oxygen rich region of the AlN.


2015 ◽  
Author(s):  
Todd Brintlinger ◽  
Andrew Herzing ◽  
James P. Long ◽  
Igor Vurgaftman ◽  
Rhonda Stroud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document