Dark-Field Imaging of Thin Specimens with a Forescatter Electron Detector at Low Accelerating Voltage

2013 ◽  
Vol 19 (6) ◽  
pp. 1688-1697 ◽  
Author(s):  
Nicolas Brodusch ◽  
Hendrix Demers ◽  
Raynald Gauvin

AbstractA forescatter electron detector (FSED) was used to acquire dark-field micrographs (DF-FSED) on thin specimens with a scanning electron microscope. The collection angles were adjusted with the detector distance from the beam axis, which is similar to the camera length of the scanning transmission electron microscope annular DF detectors. The DF-FSED imaging resolution was calculated with SMART-J on an aluminum alloy and carbon nanotubes (CNTs) decorated with platinum nanoparticles. The resolution was three to six times worse than with bright-field imaging. Measurements of nanometer-size objects showed a similar feature size in DF-FSED imaging despite a signal-to-noise ratio 12 times smaller. Monte Carlo simulations were used to predict the variation of the contrast of a CNT/Fe/Pt system as a function of the collection angles. It was constant for very high collection angles (>450 mrad) and confirmed experimentally. The reverse contrast between carbon black particles and the smallest titanium dioxide (TiO2) nanoparticles was predicted by Monte Carlo simulations and observed in the DF-FSED micrograph of a battery electrode coating. However, segmentation of the micrograph was not able to isolate the TiO2 nanoparticle phase because of the close contrast of small TiO2 nanoparticles compared to the C black particles.

Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


2011 ◽  
Vol 110 (10) ◽  
pp. 109902 ◽  
Author(s):  
Michael Chabior ◽  
Tilman Donath ◽  
Christian David ◽  
Manfred Schuster ◽  
Christian Schroer ◽  
...  

Author(s):  
E. J. Kirkland ◽  
R. F. Loane ◽  
J. Silcox

The multislice method (e.g. Goodman and Moodie) of simulating bright field conventional transmission electron microscope (BF-CTEM) images of crystalline specimens can be extended to simulation of scanning transmission electron microscope (STEM) images of similar specimens in the annular dark field (ADF) mode. According to the reciprocity theorem (Pogany and Turner and Cowley) BF-CTEM would be equivalent to BF STEM with a point detector. Such a detector (STEM) however would yield an exceedingly small signal to noise ratio. Thus, STEM has found more use in the ADF mode (e.g. Crewe et al.) exploiting the large contrast arising from heavy atoms. In BF imaging (CTEM and STEM) the constrast is roughly proportional to the scattering amplitude f α Z3/4 whereas in DF (CTEM and STEM) imaging it is roughly proportional to the scattering cross σ α Z3/2 where Z is atomic number, a form that is advantageous foatom discrimination.


2011 ◽  
Vol 110 (5) ◽  
pp. 053105 ◽  
Author(s):  
Michael Chabior ◽  
Tilman Donath ◽  
Christian David ◽  
Manfred Schuster ◽  
Christian Schroer ◽  
...  

Author(s):  
S. Hillyard ◽  
Y.-P. Chen ◽  
W.J. Schaff ◽  
L.F. Eastman ◽  
J. Silcox

Annular dark field imaging in the scanning transmission electron microscope (STEM) exhibits both high resolution and Z-contrast. It is intrinsically quantitative since image data can be recorded directly from linear detectors into digital memory. Annular dark field imaging has been used, along with energy filtered imaging to correct for sample thickness variation, to map out the In concentration in InxGa1-xAs quantum wells with near atomic resolution and sensitivity. This approach is similar to “chemical lattice imaging”, which maps out composition variation using a conventional transmission electron microscope image and a vector pattern recognition algorithm.The quantum wells were grown by molecular-beam epitaxy (MBE). Figure 1 shows a typical high resolution annular dark field image of a 50 Å wide nominal In0.3Ga0.7As/GaAs quantum well. The linescan in figure 2 gives the actual numbers making up the image. Barring contaminants and lattice imperfections, the change in intensity with position is caused by two things: variation of In concentration and thickness.


Sign in / Sign up

Export Citation Format

Share Document