Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

2016 ◽  
Vol 28 (1) ◽  
pp. 015904 ◽  
Author(s):  
Masanari Koguchi ◽  
Ruriko Tsuneta ◽  
Yoshihiro Anan ◽  
Koji Nakamae
2014 ◽  
Vol 20 (2) ◽  
pp. 323-329 ◽  
Author(s):  
Nestor J. Zaluzec ◽  
M. Grace Burke ◽  
Sarah J. Haigh ◽  
Matthew A. Kulzick

AbstractThe use of analytical spectroscopies during scanning/transmission electron microscope (S/TEM) investigations of micro- and nano-scale structures has become a routine technique in the arsenal of tools available to today’s materials researchers. Essential to implementation and successful application of spectroscopy to characterization is the integration of numerous technologies, which include electron optics, specimen holders, and associated detectors. While this combination has been achieved in many instrument configurations, the integration of X-ray energy-dispersive spectroscopy and in situ liquid environmental cells in the S/TEM has to date been elusive. In this work we present the successful incorporation/modifications to a system that achieves this functionality for analytical electron microscopy.


Author(s):  
J. Bentley ◽  
A. T. Fisher ◽  
E. A. Kenik ◽  
Z. L. Wang

The introduction by several manufacturers of 200kV transmission electron microscopes (TEM) equipped with field emission guns affords the opportunity to assess their potential impact on materials science by examining applications of similar 100-120kV instruments that have been in use for more than a decade. This summary is based on results from a Philips EM400T/FEG configured as an analytical electron microscope (AEM) with a 6585 scanning transmission (STEM) unit, ED AX 9100/70 or 9900 energy dispersive X-ray spectroscopy (EDS) systems, and Gatan 607 serial- or 666 parallel-detection electron energy-loss spectrometers (EELS). Examples in four areas that illustrate applications that are impossible or so difficult as to be impracticable with conventional thermionic electron guns are described below.


Author(s):  
M. Tamizifar ◽  
G. Cliff ◽  
R.W. Devenish ◽  
G.W. Lorimer

Small additions of copper, <1 wt%, have a pronounced effect on the ageing response of Al-Mg-Si alloys. The object of the present investigation was to study the effect of additions of copper up to 0.5 wt% on the ageing response of a series of Al-Mg-Si alloys and to use high resolution analytical electron microscopy to determine the composition of the age hardening precipitates.The composition of the alloys investigated is given in Table 1. The alloys were heat treated in an argon atmosphere for 30m, water quenched and immediately aged either at 180°C for 15 h or given a duplex treatment of 180°C for 15 h followed by 350°C for 2 h2. The double-ageing treatment was similar to that carried out by Dumolt et al. Analyses of the precipitation were carried out with a HB 501 Scanning Transmission Electron Microscope. X-ray peak integrals were converted into weight fractions using the ratio technique of Cliff and Lorimer.


Author(s):  
John B. Vander Sande ◽  
Thomas F. Kelly ◽  
Douglas Imeson

In the scanning transmission electron microscope (STEM) a fine probe of electrons is scanned across the thin specimen, or the probe is stationarily placed on a volume of interest, and various products of the electron-specimen interaction are then collected and used for image formation or microanalysis. The microanalysis modes usually employed in STEM include, but are not restricted to, energy dispersive X-ray analysis, electron energy loss spectroscopy, and microdiffraction.


2014 ◽  
Vol 20 (4) ◽  
pp. 1318-1326 ◽  
Author(s):  
Nestor J. Zaluzec

AbstractClosed form analytical equations used to calculate the collection solid angle of six common geometries of solid-state X-ray detectors in scanning and scanning/transmission analytical electron microscopy are presented. Using these formulae one can make realistic comparisons of the merits of the different detector geometries in modern electron column instruments. This work updates earlier formulations and adds new detector configurations.


2012 ◽  
Vol 18 (S2) ◽  
pp. 974-975 ◽  
Author(s):  
M. Watanabe ◽  
A. Yasuhara ◽  
E. Okunishi

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


Sign in / Sign up

Export Citation Format

Share Document