Structures of a Stacking Fault and a Rotational Domain Boundary in CVD α-Silicon Nitride

1995 ◽  
Vol 1 (6) ◽  
pp. 263-266
Author(s):  
D.S. Zhou ◽  
T.E. Mitchell

A 1/2[0001](0001) stacking fault and a planar 60° rotational domain boundary on the (0001) plane in as-grown CVD α-Si3N4 crystals have been characterized by high-resolution electron microscopy and image simulation. As reported previously, two types of coherent boundaries have been observed in this material, namely, stacking faults and rotational domain boundaries. The former involves only a translational displacement, while the latter separates two grains by a 60° rotation in addition to a translation. Inasmuch as the difference resulting from the rotational component can hardly be detected by high-resolution electron microscopy, care must be taken to analyze them first by analytical electron microscopy. In this paper, these two types of boundaries are studied and structural models are constructed that give simulated images in satisfactory agreement with observed images.

Author(s):  
Margaret L. Sattler ◽  
Michael A. O'Keefe

Multilayered materials have been fabricated with such high perfection that individual layers having two atoms deep are possible. Characterization of the interfaces between these multilayers is achieved by high resolution electron microscopy and Figure 1a shows the cross-section of one type of multilayer. The production of such an image with atomically smooth interfaces depends upon certain factors which are not always reliable. For example, diffusion at the interface may produce complex interlayers which are important to the properties of the multilayers but which are difficult to observe. Similarly, anomalous conditions of imaging or of fabrication may occur which produce images having similar traits as the diffusion case above, e.g., imaging on a tilted/bent multilayer sample (Figure 1b) or deposition upon an unaligned substrate (Figure 1c). It is the purpose of this study to simulate the image of the perfect multilayer interface and to compare with simulated images having these anomalies.


1993 ◽  
Vol 8 (9) ◽  
pp. 2112-2127 ◽  
Author(s):  
A. Bardal ◽  
O. Eibl ◽  
Th. Matthée ◽  
G. Friedl ◽  
J. Wecker

The microstructures of YBa2Cu3O7−δ (YBCO) thin films grown on Si with Y-stabilized ZrO2 (YSZ) and Y2O3 buffer layers were characterized by means of high-resolution electron microscopy. At the Si–YSZ interface, a 2.5 nm thick layer of regrown amorphous SiOx is present. The layer is interrupted by crystalline regions, typically 5 to 10 nm wide and 10 to 50 nm apart. Close to the crystalline regions, {111} defects are present in the Si substrate. The typical defect observed is an extrinsic stacking fault plus a perfect dislocation close to the stacking fault which terminates extra {111} planes in the upper part of the Si. These defects are probably formed by condensation of Si self-interstitials created during oxide regrowth. Precipitates are present in the Si close to the Si–YSZ interface and indicate that in-diffusion of Zr has occurred. The YSZ–Y2O3 interface is atomically sharp and essentially planar and contains no second phases. Perfect misfit dislocations with Burgers vector 1/2〈110〉 are present at this interface along with unrelaxed elastic misfit stresses. The Y2O3–YBCO interface is atomically sharp and planar, but contains steps. (001) stacking faults are present in the YBCO above these steps; the faults are, however, healed a few unit cells away from the interface. By HREM analysis of ultrathin specimen areas, the atomic layer of the YBCO closest to the Y2O3 was found to be a barium-oxygen layer.


2001 ◽  
Vol 16 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Takeo Oku ◽  
Jan-Olov Bovin ◽  
Iwami Higashi ◽  
Takaho Tanaka ◽  
Yoshio Ishizawa

Atomic positions for Y atoms were determined by using high-resolution electron microscopy and electron diffraction. A slow-scan charge-coupled device camera which had high linearity and electron sensitivity was used to record high-resolution images and electron diffraction patterns digitally. Crystallographic image processing was applied for image analysis, which provided more accurate, averaged Y atom positions. In addition, atomic disordering positions in YB56 were detected from the differential images between observed and simulated images based on x-ray data, which were B24 clusters around the Y-holes. The present work indicates that the structure analysis combined with digital high-resolution electron microscopy, electron diffraction, and differential images is useful for the evaluation of atomic positions and disordering in the boron-based crystals.


2000 ◽  
Vol 6 (S2) ◽  
pp. 1044-1045
Author(s):  
C.J.D. Hetherington ◽  
U. Dahmen

Grain boundaries in fee metals with low stacking fault energy are known to undergo extended relaxations that can at times lead to a thin layer of a different structure. In Cu, for example, it has been found that ∑3﹛ 112﹜ boundaries relax into a 9R phase [1]. In this work, we have used high resolution electron microscopy to investigate the atomic structure of ∑3 grain boundaries in mazed bicrystal films of Au. Using ﹛111﹜ Ge surfaces as a template, Au bicrystals can be grown in two orientation variants, related to each other by a 60° rotation about the surface normal. As described previously, such films have a strong tendency to facet onto the coherent twin plane parallel to the substrate [2], also known as “double positioning” [3]. If films are made very thin, the likelihood for such in-plane boundaries to lie in the foil decreases, and it becomes possible to observe the atomic structure of edge-on interfaces along <111>.


2001 ◽  
Vol 16 (8) ◽  
pp. 2179-2181
Author(s):  
Ming Zhang ◽  
Hongliang He ◽  
F. F. Xu ◽  
T. Sekine ◽  
T. Kobayashi ◽  
...  

A cubic silicon nitride embedded in amorphous SiO2 compound has been characterized by means of high-resolution analytical electron microscopy. The specimen was prepared from β–Si3N4 powders at a high pressure and temperature by shock wave compression. The typical high-resolution electron microscopy image from one small crystallite together with its diffractodiagram pattern indicated that the Si3N4 crystallites had a cubic symmetry. The electron energy loss spectrum from the small crystallite is very different from those of outside amorphous SiO2 phase and raw β–Si3N4 particles, and there are more N elements that were detected in this small crystallite than those in standard Si3N4.


1994 ◽  
Vol 357 ◽  
Author(s):  
Yaping Liu ◽  
Imtiaz Majid ◽  
John B. Vander Sande

AbstractThe atomic structure of [001] tilt grain boundaries of Σ25 (210), Σ5 (310), Σ213 (320) and Σ217 (410) in TiO2 (rutile) were studied using high resolution electron microscopy and computer simulation. Regularly separated small steps (1/2 [120] high) and big steps (3/2 [120] high) which contain secondary dislocations were found in the (210) boundary as a result of deviation from the exact Σ5 misorientation and (210) symmetric plane. Similar steps were also found in (310) and (320) boundaries. Flat segments between the steps were found to have very accurate misorientation of their, Σ's and a nearly symmetric boundary plane. Their rigid body translation, volume expansion and relaxed structures were determined by comparing HRTEM images with computer calculated structures and simulated images. An irregular core structure was found in the (410) boundary when its misorientation deviated 2° from the exact Σ17 misorientation.


Author(s):  
J. Lindner ◽  
A. Sachdev ◽  
M.A. Villa-Garcia ◽  
J. Schwank

The removal of sulfur from petroleum feedstocks is of great importance to the oil industry. The process, known as hydrodesulfurization (HDS), is typically catalyzed by Group VIB metal oxides. The workhorse of the industry today is an alumina supported CoO-MoO3 catalyst. Recently, several models have been proposed for the active site responsible for HDS activity, but despite extensive research efforts there is still no clear relationship between structure and activity. We have prepared promoted and non-stoichiometric catalyst samples via a novel solid state synthesis route. These catalysts are not only quite active in the HDS of thiophene, but are also more thermally stable and consequently easier to characterize than the standard HDS materials prepared by wet chemistry methods. Most studies on HDS catalysts rely on bulk techniques for characterization analysis, however, these do not provide any information at the microscopic level where catalysis occurs. For that reason we have used analytical and high resolution electron microscopy to obtain information at the atomic level, coupled with bulk techniques such as x-ray diffraction and surface area measurements. The objective was to develop a link between the microstructure of our solid state catalysts and their HDS activity.


1996 ◽  
Vol 460 ◽  
Author(s):  
E. Abe ◽  
T. Kumagai ◽  
S. Kajiwara ◽  
M. Nakamura

ABSTRACTA microstructure of the massively transformed γ-TiAl (γm) phase in a Ti-48at.%Al alloy, which was heat treated in the high-temperature α-Ti (disordered hep) single phase field (1683K), followed by ice water quenching, has been examined using high-resolution electron microscopy. The characteristic features of the microstructure originated from the α→γ massive transformation have been clarified in detail, which are as follows. (1) Extremely thin hep plates (about 0.8–2nm in thickness), which are considered to be a retained α phase, are found to exist in the γm phase. (2) Twin boundaries are found to be not flat interfaces, that is, twin interfaces are not on the exact (111) mirror plane. This situation is attributed to the existence of a number of partial dislocations at the twin boundaries. (3) Antiphase relationship between the regions either side of the thin rotated domain wall [1] is confirmed. The validity of this situation is explained by assuming that the thin rotated domain wall has been grown from a simple antiphase domain boundary. On the basis of these facts, mechanism of the α→γ massive transformation has been discussed.


Sign in / Sign up

Export Citation Format

Share Document