An evaluation of the BrainLAB 6D ExacTrac/Novalis Tx System for image-guided intracranial radiotherapy

2017 ◽  
Vol 16 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Claire Montgomery ◽  
Mark Collins

AbstractPurposeStereotactic-fractionated radiotherapy and radiosurgery (RS) for benign and malignant intracranial lesions relies on a very high degree of accuracy in dose alignment due to the ablative dose delivered, and therefore requires a high-precision image guidance modality. The aim of this review is to investigate the localisation and verification accuracy performance of ExacTrac (ET) and Novalis Tx System.Materials and methodsA systematic review of the database Science Direct was carried out using search terms ‘stereotactic radiotherapy (SRT)’ and ‘ET’. All articles before 2000 were excluded. Only articles that involved intracranial lesions, with the exception of one article, were included in the final review.ResultsResults from gold standard Hidden Target Tests and patient data show that patient position can be reproduced within 1·0 mm with the use of ET imaging. In addition, the 6 degrees of freedom algorithm function of ET allows for better translational accuracy as well optimal positioning when rotations are corrected for. Studies showed excellent correlation (p<0·01) between bony ET images and cone beam computed tomography (CBCT) soft tissue registration, evidencing the safe reliance of bony anatomy for image guidance via ET. Shifts were found to be comparable between CBCT and ET.ConclusionThere is the need for regular calibration to prevent systematic errors and potential geographic miss. However, due to ET’s additional benefits, including reduced concomitant dose and faster imaging time, ET is the superior image guidance modality for RS/SRT in the treatment of intracranial lesions.

2020 ◽  
Author(s):  
Lucian Chan ◽  
Garrett Morris ◽  
Geoffrey Hutchison

The calculation of the entropy of flexible molecules can be challenging, since the number of possible conformers grows exponentially with molecule size and many low-energy conformers may be thermally accessible. Different methods have been proposed to approximate the contribution of conformational entropy to the molecular standard entropy, including performing thermochemistry calculations with all possible stable conformations, and developing empirical corrections from experimental data. We have performed conformer sampling on over 120,000 small molecules generating some 12 million conformers, to develop models to predict conformational entropy across a wide range of molecules. Using insight into the nature of conformational disorder, our cross-validated physically-motivated statistical model can outperform common machine learning and deep learning methods, with a mean absolute error ≈4.8 J/mol•K, or under 0.4 kcal/mol at 300 K. Beyond predicting molecular entropies and free energies, the model implies a high degree of correlation between torsions in most molecules, often as- sumed to be independent. While individual dihedral rotations may have low energetic barriers, the shape and chemical functionality of most molecules necessarily correlate their torsional degrees of freedom, and hence restrict the number of low-energy conformations immensely. Our simple models capture these correlations, and advance our understanding of small molecule conformational entropy.


2011 ◽  
Vol 200 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Sabine Scheibe ◽  
Mario M. Dorostkar ◽  
Christian Seebacher ◽  
Rainer Uhl ◽  
Frank Lison ◽  
...  

2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


Soil Research ◽  
2002 ◽  
Vol 40 (8) ◽  
pp. 1399 ◽  
Author(s):  
B. L. Henderson ◽  
E. N. Bui

A new pH water to pH CaCl2 calibration curve was derived from data pooled from 2 National Land and Water Resources Audit projects. A total of 70465 observations with both pH in water and pH in CaCl2 were available for statistical analysis. An additive model for pH in CaCl2 was fitted from a smooth function of pH in water created by a smoothing spline with 6 degrees of freedom. This model appeared stable outside the range of the data and performed well (R2 = 96.2, s = 0.24). The additive model for conversion of pHw to pHCa is sigmoidal over the range of pH 2.5 to 10.5 and is similar in shape to earlier models. Using this new model, a look-up table for converting pHw to pHCa was created.


2014 ◽  
Vol 926-930 ◽  
pp. 2054-2057
Author(s):  
Jun Hui He

This paper proposed customers to participate typology based on three dimensions, which are the customers’ autonomy in the process, the nature of the firm‐customer collaboration, and the stage of the innovation process. Then proposed customers to participate in the type of open innovation framework. Through the static comparative and dynamic evolution simulation found: customers tend to be open to participate in the development of new products pre innovation, the tendency to begin to choose the low participation of degrees of freedom, and ultimately tend to opt for a high degree of freedom to participate.


Sign in / Sign up

Export Citation Format

Share Document