Dose verification of volumetric-modulated arc therapy using one-dimensional and two-dimensional dosimeters

2018 ◽  
Vol 18 (03) ◽  
pp. 304-308
Author(s):  
Jalil ur Rehman ◽  
Zahra Syed ◽  
Ghulam Hussain ◽  
Nisar Ahmad ◽  
H M Noor ul Huda Khan Asghar ◽  
...  

AbstractPurposeTo verify dose delivery and quality assurance of volumetric-modulated arc therapy (VMAT) for head and neck (H&N) cancer.MethodThe Imaging and Radiation Oncology Core Houston (IROC-H) H&N phantom with thermoluminescent dosimeters (TLDs) and films, were imaged with computed tomography scan and the reconstructed image was transferred to pinnacle treatment planning system (TPS). On TPS, the planning target volume (PTV), secondary target volume (STV) and organ at risk (OAR) were delineated manually and a treatment plan was made. The dose constraints were determined for the concerned organs according to IROC-H prescription. The treatment plan was optimised using adoptive convolution algorithm to improve dose homogeneity and conformity. The dose calculation was performed using C.C Convolution algorithm and a Varian True Beam linear accelerator was used to deliver the treatment plan to the H&N phantom. The delivered radiation dose to the phantom was measured through TLDs and GafChromic external beam radiotherapy 2 (EBT2) films. The dosimetric performance of the VMAT delivery was studied by analysing percent dose difference, isodose line profile and gamma analysis of the TPS-computed dose and linac-delivered doses.ResultThe percent dose difference of 3.8% was observed between the planned and measured doses of TLDs and a 1.5-mm distance to agreement (DTA) was observed by comparing isodose line profiles. Passed the gamma criteria of 3%/3 mm was with good percentages.ConclusionThe dosimetric performance of VMAT delivery for a challenging H&N radiotherapy can be verified using TLDs and films embedded in an anthropomorphic H&N phantom.

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Ashley Rankine ◽  
Kirsty Turnbull ◽  
Stuart Greenham ◽  
Thomas P. Shakespeare ◽  
Justin Westhuyzen ◽  
...  

Step-and-shoot (S&S) intensity-modulated radiotherapy (IMRT) using the XiO treatment planning system (TPS) has been routinely used for patients receiving postprostatectomy radiotherapy (PPRT). After installing the Monaco, a pilot study was undertaken with five patients to compare XiO with Monaco (V2.03) TPS for PPRT with respect to plan quality for S&S as well as volumetric-modulated arc therapy (VMAT). Monaco S&S showed higher mean clinical target volume (CTV) coverage (99.85%) than both XiO S&S (97.98%, P = 0.04) and Monaco VMAT (99.44, P = 0.02). Rectal V60Gy volumes were lower for Monaco S&S compared to XiO (46.36% versus 58.06%, P = 0.001) and Monaco VMAT (46.36% versus 54.66%, P = 0.02). Rectal V60Gy volume was lowest for Monaco S&S and superior to XiO (mean 19.89% versus 31.25%, P = 0.02). Rectal V60Gy volumes were lower for Monaco VMAT compared to XiO (21.09% versus 31.25%, P = 0.02). Other organ-at-risk (OAR) parameters were comparable between TPSs. Compared to XiO S&S, Monaco S&S plans had fewer segments (78.6 versus 116.8 segments, P = 0.02), lower total monitor units (MU) (677.6 MU versus 770.7 MU, P = 0.01), and shorter beam-on times (5.7 min versus 7.6 min, P = 0.03). This pilot study suggests that Monaco S&S improves CTV coverage, OAR doses, and planning and treatment times for PPRT.


2020 ◽  
Author(s):  
Chengqiang Li ◽  
Cheng Tao ◽  
Tong Bai ◽  
Zhenjiang Li ◽  
Ying Tong ◽  
...  

Abstract Background: To investigate the beam complexity and monitor unit(MU)efficiency issues for two different volumetric modulated arc therapy (VMAT) delivery technologies for patients with left-sided breast cancer (BC) and nasopharyngeal carcinoma (NPC). Methods: Twelve left-sided BC and seven NPC cases were enrolled in this study. Each delivered treatment plan was optimized in Pinnacle 3 treatment planning system with Auto-Planning module for Trilogy and Synergy systems. Similar planning dose objectives and beam configuration were used for each site in two different delivery systems to produce clinically acceptable plans. Beam complexity was evaluated in terms of segment area(SA), segment width(SW), leaf sequence variability(LSV), aperture area variability(AAV), modulation complexity score(MCS) based on MLC sequence and MU. Results: With similar plan quality, the average SAs for Trilogy plans were smaller than those for Synergy plans: 55.5 ± 21.3 cm 2 vs. 66.3 ± 17.9 cm 2 (p<0.05) for the NPC cases, and 100.7 ± 49.2 cm 2 vs. 108.5 ± 42.7 cm 2 (p<0.05) for BC cases, respectively. The SW was statistically significant for two delivery systems (NPC: 6.87±1.95cm vs.6.72±2.71cm, p < 0.05; BC: 8.84±2.56cm vs.8.09±2.63cm, p < 0.05). LSV was statistically significant smaller for Trilogy (NPC: 0.84±0.033 vs.0.86±0.033, p < 0.05; BC: 0.89±0.026 vs.0.90±0.26, p < 0.05). The mean AAV was statistically significant larger for Trilogy than Synergy (NPC: 0.18±0.064 vs.0.14±0.037, p < 0.05; BC: 0.46±0.15 vs.0.33±0.13, p < 0.05). The MCS values for the Trilogy were higher than those for the Synergy: 0.14 ± 0.016vs. 0.12 ± 0.017 (p<0.05) for the NPC cases, and 0.42 ± 0.106 vs. 0.30 ± 0.087(p<0.05) for the BC cases. Compared with Synergy plans, the average MU for Trilogy plans were larger: 828.6±74.1MU and 782.9±85.2MU (p>0.05) for the NPC cases, and 444.8±61.3MU and 393.8±75.3MU (p>0.05) for the BC cases. Conclusions: The pinnacle 3 Auto planning system can optimize BC and NPC plans to obtain the same plan quality using Trilogy and Synergy systems. We found that this two systems resulted in different SA, SW, LSV, AAV and MCS. As a result, we suggested that beam complexity should be considered in providing further methodologies while optimizing VMAT auto planning.


2019 ◽  
Vol 19 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Payal Raina ◽  
Sudha Singh ◽  
Rajanigandha Tudu ◽  
Rashmi Singh ◽  
Anup Kumar

AbstractAim:The aim of this study was to compare volumetric modulated arc therapy (VMAT) with dynamic intensity-modulated radiation therapy (dIMRT) and step-and-shoot IMRT (ssIMRT) for different treatment sites.Materials and methods:Twelve patients were selected for the planning comparison study. This included three head and neck, three brain, three rectal and three cervical cancer patients. Total dose of 50 Gy was given for all the plans. Plans were done for Elekta synergy with Monaco treatment planning system. All plans were generated with 6 MV photons beam. Plan evaluation was based on the ability to meet the dose volume histogram, dose homogeneity index, conformity index and radiation delivery time, and monitor unit needs to deliver the prescribed dose.Results:The VMAT and dIMRT plans achieved the better conformity (CI98% = 0·965 ± 0·023) and (CI98% = 0·939 ± 0·01), respectively, while ssIMRT plans were slightly inferior (CI98% = 0·901 ± 0·038). The inhomogeneity in the planning target volume (PTV) was highest with ssIMRT with HI equal to 0·097 ± 0·015 when compared to VMAT with HI equal to 0·092 ± 0·0369 and 0·095 ± 0·023 with dIMRT. The integral dose is found to be inferior with VMAT 105·31 ± 53·6 (Gy L) when compared with dIMRT 110·75 ± 52·9 (Gy L) and ssIMRT 115 38 ± 55·1(Gy L). All the techniques respected the planning objective for all organs at risk. The delivery time per fraction for VMAT was much lower than dIMRT and ssIMRT.Findings:Our results indicate that dIMRT and VMAT provide better sparing of normal tissue, homogeneity and conformity than ssIMRT with reduced treatment delivery time.


2017 ◽  
Vol 17 (2) ◽  
pp. 230-243
Author(s):  
Noufal M. Padannayil ◽  
Kallikuzhiyil K. Abdullah ◽  
Pallimanhayil A. R. Subha ◽  
Sanudev Sadanadan

AbstractAimTo evaluate the impact of couch translational shifts on dose–volume histogram (DVH) and radiobiological parameters [tumour control probability (TCP), equivalent uniform dose (EUD) and normal tissue complication probability (NTCP)] of volumetric modulated arc therapy (VMAT) plans and to develop a simple and swift method to predict the same online, on a daily basis.MethodsIn total, ten prostate patients treated with VMAT technology were selected for this study. The plans were generated using Eclipse TPS and delivered using Clinac ix LINAC equipped with a Millennium 120 multileaf collimator. In order to find the effect of systematic translational couch shifts on the DVH and radiobiological parameters, errors were introduced in the clinically accepted base plan with an increment of 1 mm and up to 5 mm from the iso-centre in both positive and negative directions of each of the three axis, x [right–left (R-L)], y [superior–inferior (S-I)] and z [anterior–posterior (A-P)]. The percentages of difference in these parameters (∆D, ∆TCP, ∆EUD and ∆NTCP) were analyzed between the base plan and the error introduced plans. DVHs of the base plan and the error plans were imported into the MATLAB software (R2013a) and an in-house MATLAB code was generated to find the best curve fitted polynomial functions for each point on the DVH, there by generating predicted DVH for planning target volume (PTV), clinical target volume (CTV) and organs at risks (OARs). Functions f(x, vj), f(y, vj) and f(z, vj) were found to represent the variation in the dose when there are couch translation shifts in R-L, S-I and A-P directions, respectively. The validation of this method was done by introducing daily couch shifts and comparing the treatment planning system (TPS) generated DVHs and radiobiological parameters with MATLAB code predicted parameters.ResultsIt was noted that the variations in the dose to the CTV, due to both systematic and random shifts, were very small. For CTV and PTV, the maximum variations in both DVH and radiobiological parameters were observed in the S-I direction than in the A-P or R-L directions. ∆V70 Gy and ∆V60 Gy of the bladder varied more due to S-I shift whereas, ∆V40 Gy, ∆EUD and ∆NTCP varied due to A-P shifts. All the parameters in rectum were most affected by the A-P shifts than the shifts in other two directions. The maximum percentage of deviation between the TPS calculated and MATLAB predicted DVHs of plans were calculated for targets and OARs and were found to be less than 0·5%.ConclusionThe variations in the parameters depend upon the direction and magnitude of the shift. The DVH curves generated by the TPS and predicted by the MATLAB showed good correlation.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengqiang Li ◽  
Cheng Tao ◽  
Tong Bai ◽  
Zhenjiang Li ◽  
Ying Tong ◽  
...  

Abstract Background To investigate the beam complexity and monitor unit (MU) efficiency issues for two different volumetric modulated arc therapy (VMAT) delivery technologies for patients with left-sided breast cancer (BC) and nasopharyngeal carcinoma (NPC). Methods Twelve left-sided BC and seven NPC cases were enrolled in this study. Each delivered treatment plan was optimized in the Pinnacle3 treatment planning system with the Auto-Planning module for the Trilogy and Synergy systems. Similar planning dose objectives and beam configurations were used for each site in the two different delivery systems to produce clinically acceptable plans. The beam complexity was evaluated in terms of the segment area (SA), segment width (SW), leaf sequence variability (LSV), aperture area variability (AAV), and modulation complexity score (MCS) based on the multileaf collimator sequence and MU. Plan delivery and a gamma evaluation were performed using a helical diode array. Results With similar plan quality, the average SAs for the Trilogy plans were smaller than those for the Synergy plans: 55.5 ± 21.3 cm2 vs. 66.3 ± 17.9 cm2 (p < 0.05) for the NPC cases and 100.7 ± 49.2 cm2 vs. 108.5 ± 42.7 cm2 (p < 0.05) for the BC cases, respectively. The SW was statistically significant for the two delivery systems (NPC: 6.87 ± 1.95 cm vs. 6.72 ± 2.71 cm, p < 0.05; BC: 8.84 ± 2.56 cm vs. 8.09 ± 2.63 cm, p < 0.05). The LSV was significantly smaller for Trilogy (NPC: 0.84 ± 0.033 vs. 0.86 ± 0.033, p < 0.05; BC: 0.89 ± 0.026 vs. 0.90 ± 0.26, p < 0.05). The mean AAV was significantly larger for Trilogy than for Synergy (NPC: 0.18 ± 0.064 vs. 0.14 ± 0.037, p < 0.05; BC: 0.46 ± 0.15 vs. 0.33 ± 0.13, p < 0.05). The MCS values for Trilogy were higher than those for Synergy: 0.14 ± 0.016 vs. 0.12 ± 0.017 (p < 0.05) for the NPC cases and 0.42 ± 0.106 vs. 0.30 ± 0.087 (p < 0.05) for the BC cases. Compared with the Synergy plans, the average MUs for the Trilogy plans were larger: 828.6 ± 74.1 MU and 782.9 ± 85.2 MU (p > 0.05) for the NPC cases and 444.8 ± 61.3 MU and 393.8 ± 75.3 MU (p > 0.05) for the BC cases. The gamma index agreement scores were never below 91% using 3 mm/3% (global) distance to agreement and dose difference criteria and a 10% lower dose exclusion threshold. Conclusions The Pinnacle3 Auto-Planning system can optimize BC and NPC plans to achieve the same plan quality using both the Trilogy and Synergy systems. We found that these two systems resulted in different SAs, SWs, LSVs, AAVs and MCSs. As a result, we suggested that the beam complexity should be considered in the development of further methodologies while optimizing VMAT autoplanning.


2020 ◽  
Author(s):  
Chengqiang Li ◽  
Cheng Tao ◽  
Tong Bai ◽  
Zhenjiang Li ◽  
Ying Tong ◽  
...  

Abstract Background: To investigate the beam complexity and monitor unit(MU)efficiency issues for two different volumetric modulated arc therapy (VMAT) delivery technologies for patients with left-sided breast cancer (BC) and nasopharyngeal carcinoma (NPC). Methods: Twelve left-sided BC and seven NPC cases were enrolled in this study. Each delivered treatment plan was optimized in Pinnacle 3 treatment planning system with Auto-Planning module for Trilogy and Synergy systems. Similar planning dose objectives and beam configuration were used for each site in two different delivery systems to produce clinically acceptable plans. Beam complexity was evaluated in terms of segment area(SA), segment width(SW), leaf sequence variability(LSV), aperture area variability(AAV), modulation complexity score(MCS) based on MLC sequence and MU. Results: With similar plan quality, the average SAs for Trilogy plans were smaller than those for Synergy plans: 55.5 ± 21.3 cm 2 vs. 66.3 ± 17.9 cm 2 (p<0.05) for the NPC cases, and 100.7 ± 49.2 cm 2 vs. 108.5 ± 42.7 cm 2 (p<0.05) for BC cases, respectively. The SW was statistically significant for two delivery systems (NPC: 6.87±1.95cm vs.6.72±2.71cm, p < 0.05; BC: 8.84±2.56cm vs.8.09±2.63cm, p < 0.05). LSV was statistically significant smaller for Trilogy (NPC: 0.84±0.033 vs.0.86±0.033, p < 0.05; BC: 0.89±0.026 vs.0.90±0.26, p < 0.05). The mean AAV was statistically significant larger for Trilogy than Synergy (NPC: 0.18±0.064 vs.0.14±0.037, p < 0.05; BC: 0.46±0.15 vs.0.33±0.13, p < 0.05). The MCS values for the Trilogy were higher than those for the Synergy: 0.14 ± 0.016vs. 0.12 ± 0.017 (p<0.05) for the NPC cases, and 0.42 ± 0.106 vs. 0.30 ± 0.087(p<0.05) for the BC cases. Compared with Synergy plans, the average MU for Trilogy plans were larger: 828.6±74.1MU and 782.9±85.2MU (p>0.05) for the NPC cases, and 444.8±61.3MU and 393.8±75.3MU (p>0.05) for the BC cases. Conclusions: The pinnacle 3 Auto planning system can optimize BC and NPC plans to obtain the same plan quality using Trilogy and Synergy systems. We found that this two systems resulted in different SA, SW, LSV, AAV and MCS. As a result, we suggested that beam complexity should be considered in providing further methodologies while optimizing VMAT auto planning.


2018 ◽  
Vol 17 (4) ◽  
pp. 441-446 ◽  
Author(s):  
Jalil ur Rehman ◽  
Muhammad Isa ◽  
Nisar Ahmad ◽  
H. M. Noor ul Huda Khan Asghar ◽  
Zaheer A. Gilani ◽  
...  

AbstractBackgroundAccurate three-dimensional dosimetry is essential in modern radiotherapy techniques such as volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). In this research work, the PRESAGE® dosimeter was used as quality assurance (QA) tool for VMAT planning for head and neck (H&N) cancer.Material and methodComputer tomography (CT) scans of an Image Radiation Oncology Core (IROC) H&N anthropomorphic phantom with both IROC standard insert and PRESAGE® insert were acquired separately. Both CT scans were imported into the Pinnacle (9.4 version) TPS for treatment planning, where the structures [planning target volume (PTV), organs at risk) and thermoluminescent detectors (TLDs) were manually contoured and used to optimise a VMAT plan. Treatment planning was done using VMAT (dual arc: 182°–178°, 178°–182°). Beam profile comparisons and gamma analysis were used to quantify agreement with film, PRESAGE® measurement and treatment planning system (TPS) calculated dose distribution.ResultsThe average ratio of TLD measured to calculated doses at the four PTV locations in the H&N phantom were between 0·95 to 0·99 for all three VMAT deliveries. Dose profiles were taken along the left–right, the anterior–posterior and superior–inferior axes, and good agreement was found between the PRESAGE® and Pinnacle profile. The mean value of gamma results for three VMAT deliveries in axial and sagittal planes were found to be 94·24 and 93·16% when compared with film and Pinnacle, respectively. The average values comparing the PRESAGE® results and dose values calculated on Pinnacle were observed to be 95·29 and 94·38% in the said planes, respectively, using a 5%/3 mm gamma criteria.ConclusionThe PRESAGE® dose measurements and calculated dose of pinnacle show reasonable agreement in both axial and sagittal planes for complex dual arc VMAT treatment plans. In general, the PRESAGE® dosimeter is found to be a feasible QA tool of VMAT plan for H&N cancer treatment.


2019 ◽  
Vol 19 (1) ◽  
pp. 65-70
Author(s):  
Gim Chee Ooi ◽  
Iskandar Shahrim Bin Mustafa

AbstractAim:This is a phantom study to evaluate the dosimetry effects of using virtual bolus (VB) in TomoTherapy Treatment Planning System (TPS) optimisation for superficial planning target volume (PTV) that extends to the body surface. Without VB, the inverse-planning TPS will continuously boost the photon fluence at the surface of the superficial PTV due to lack of build-up region. VB is used during TPS optimisation only and will not be present in actual treatment delivery.Materials and methods:In this study, a dummy planning target was contoured on a cylindrical phantom which extends to the phantom surface, and VB of various combinations of thickness and density was used in treatment planning optimisation with TomoTherapy TPS. The plans were then delivered with the treatment modality TomoTherapy. Radiochromic films (Gafchromic EBT3) were calibrated and used for dose profiles measurements. TomoTherapy Planned-Adaptive software was used to analyse the delivered Dose-Volume Histograms (DVHs).Results:The use of 2 mm VB was not providing adequate build-up area and was unable to reduce the hot spots during treatment planning and actual delivery. The use of 4 mm VB was able to negate the photon fluence boosting effect by the TPS, and the actual delivery showed relatively small deviations from the treatment plan. The use of 6 mm VB caused significant dose overestimation by the TPS in the superficial regions resulting in insufficient dose coverage delivered.Findings:VB with the combination of 4 mm thickness and 1·0 g/cc density provides the most robust solution for the TomoTherapy TPS optimisation of superficial PTV.


2015 ◽  
Vol 49 (3) ◽  
pp. 291-298 ◽  
Author(s):  
Christopher Amaloo ◽  
Daryl P. Nazareth ◽  
Lalith K. Kumaraswamy

Abstract Background. Volumetric modulated arc therapy (VMAT) has quickly become accepted as standard of care for the treatment of prostate cancer based on studies showing it is able to provide faster delivery with adequate target coverage and reduced monitor units while maintaining organ at risk (OAR) sparing. This study aims to demonstrate the potential to increase dose conformality with increased planner control and OAR sparing using a hybrid treatment technique compared to VMAT. Methods. Eleven patients having been previously treated for prostate cancer with VMAT techniques were replanned with a hybrid technique on Varian Treatment Planning System. Multiple static IMRT fields (2 to 3) were planned initially based on critical OAR to reduce dose but provide some planning treatment volume (PTV) coverage. This was used as a base dose plan to provide 30-35% coverage for a single arc VMAT plan. Results. The clinical VMAT plan was used as a control for the purposes of comparison. Average of all OAR sparing between the hybrid technique and VMAT showed the hybrid plan delivering less dose in almost all cases except for V80 of the bladder and maximum dose to right femoral head. PTV coverage was superior with the VMAT technique. Monitor unit differences varied, with the hybrid plan able to deliver fewer units 37% of the time, similar results 18% of the time, and higher units 45% of the time. On average, the hybrid plan delivered 10% more monitor units. Conclusions. The hybrid plan can be delivered in a single gantry rotation combining aspects of VMAT with regions of dynamic intensity modulated radiation therapy (IMRT) within the treatment arc.


Sign in / Sign up

Export Citation Format

Share Document