convolution algorithm
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 56)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 2131 (3) ◽  
pp. 032015
Author(s):  
V Vyplaven ◽  
A Kolomeets ◽  
A Popkov

Abstract One of the methods for detecting defects in the rolling surface of the wheels of freight cars is to measure the deformations of the rail under the passing train. The method is based on the analysis of a strain gauge signal. The main task of the strain gauge signal analysis is the selection of informative components and the removal (filtering) of interference. The paper presents methods of filtering diagnostic signals of strain gauge control and the selection of informative components. The useful signal component can be used to measure the mass of cars, to determine the dynamic load on the rails and to detect defects in the rolling surface of the wheels. The method of adaptive Kalman filtering and linear convolution are proposed as signal processing tools. Based on these algorithms, a software module based on the.NET Framework has been developed using the C# programming language. The algorithms were tested on the signals received when the train was moving along the active section of the track, with a strain gauge control system located on it. The computational complexity and speed of the algorithms are assessed, and the possibility of their further application in the autonomous mode of the system is investigated. The results show that the use of the Kalman filtering algorithm provides a significant performance advantage over the linear convolution algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chunlong Zhang ◽  
Hongtao He

The existing motion recognition system has a low athlete tracking recognition accuracy due to the poor processing effect of recognition algorithm for edge detection. A machine vision-based gymnast pose-tracking recognition system is designed for the above problem. The software part mainly optimizes the tracking recognition algorithm and uses the spatiotemporal graph convolution algorithm to construct the sequence graph structure of human joints, completes the strategy of label subset division, and completes the pose tracking according to the change of information dimension. The results of the system performance test show that the designed machine vision-based gymnast posture tracking recognition system can enhance the accuracy of tracking recognition and reduce the convergence time compared with the original system.


2021 ◽  
Author(s):  
Yangjie Zhou ◽  
Mengtian Yang ◽  
Cong Guo ◽  
Jingwen Leng ◽  
Yun Liang ◽  
...  

2021 ◽  
Author(s):  
Gan Tong ◽  
Libo Huang

Convolutional Neural Network (CNN) has been widely used in various fields and played an important role. Convolution operators are the fundamental component of convolutional neural networks, and it is also the most time-consuming part of network training and inference. In recent years, researchers have proposed several fast convolution algorithms including FFT and Winograd. Among them, Winograd convolution significantly reduces the multiplication operations in convolution, and it also takes up less memory space than FFT convolution. Therefore, Winograd convolution has quickly become the first choice for fast convolution implementation within a few years. At present, there is no systematic summary of the convolution algorithm. This article aims to fill this gap and provide detailed references for follow-up researchers. This article summarizes the development of Winograd convolution from the three aspects of algorithm expansion, algorithm optimization, implementation, and application, and finally makes a simple outlook on the possible future directions.


2021 ◽  
Vol 11 (18) ◽  
pp. 8559
Author(s):  
Iskanter-Alexandros Chousainov ◽  
Ioannis Moscholios ◽  
Panagiotis Sarigiannidis ◽  
Michael Logothetis

In this paper, a cloud radio access network (C-RAN) is considered where the baseband units form a pool of computational resource units and are separated from the remote radio heads (RRHs). Based on their radio capacity, the RRHs may form one or many clusters: a single cluster when all RRHs have the same capacity and multi-clusters where RRHs of the same radio capacity are grouped in the same cluster. Each RRH services the so-called multiservice traffic, i.e., calls from many service classes with various radio and computational resource requirements. Calls arrive in the RRHs according to a quasi-random process. This means that new calls are generated by a finite number of mobile users. Arriving calls require simultaneously computational and radio resource units in order to be accepted in the system, i.e., in the serving RRH. If their requirements are met, then these calls are served in the (serving) RRH for a service time which is generally distributed. Otherwise, call blocking occurs. We start with the single-cluster C-RAN and model it as a multiservice loss system, prove that the model has a product form solution, and determine time congestion probabilities via a convolution algorithm whose accuracy is validated with the aid of simulation. Furthermore, the previous model is generalized to include the more complex case of more than one clusters.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2033
Author(s):  
Roberto Castro ◽  
Diego Andrade ◽  
Basilio  Fraguela

Improving the performance of the convolution operation has become a key target for High Performance Computing (HPC) developers due to its prevalence in deep learning applied mainly to video processing. The improvement is being pushed by algorithmic and implementation innovations. Algorithmically, the convolution can be solved as it is mathematically enunciated, but other methods allow to transform it into a Fast Fourier Transform (FFT) or a GEneral Matrix Multiplication (GEMM). In this latter group, the Winograd algorithm is a state-of-the-art variant that is specially suitable for smaller convolutions. In this paper, we present openCNN, an optimized CUDA C++ implementation of the Winograd convolution algorithm. Our approach achieves speedups of up to 1.76× on Turing RTX 2080Ti and up to 1.85× on Ampere RTX 3090 with respect to Winograd convolution in cuDNN 8.2.0. OpenCNN is released as open-source software.


Sign in / Sign up

Export Citation Format

Share Document