Progress in the genetics of common obesity and type 2 diabetes

Author(s):  
Karani S. Vimaleswaran ◽  
Ruth J.F. Loos

The prevalence of obesity and diabetes, which are heritable traits that arise from the interactions of multiple genes and lifestyle factors, continues to rise worldwide, causing serious health problems and imposing a substantial economic burden on societies. For the past 15 years, candidate gene and genome-wide linkage studies have been the main genetic epidemiological approaches to identify genetic loci for obesity and diabetes, yet progress has been slow and success limited. The genome-wide association approach, which has become available in recent years, has dramatically changed the pace of gene discoveries. Genome-wide association is a hypothesis-generating approach that aims to identify new loci associated with the disease or trait of interest. So far, three waves of large-scale genome-wide association studies have identified 19 loci for common obesity and 18 for common type 2 diabetes. Although the combined contribution of these loci to the variation in obesity and diabetes risk is small and their predictive value is typically low, these recently identified loci are set to substantially improve our insights into the pathophysiology of obesity and diabetes. This will require integration of genetic epidemiological methods with functional genomics and proteomics. However, the use of these novel insights for genetic screening and personalised treatment lies some way off in the future.

2020 ◽  
Vol 5 ◽  
pp. 206
Author(s):  
Mathilde Boecker ◽  
Alvina G. Lai

Over the past three decades, the number of people globally with diabetes mellitus has more than doubled. It is estimated that by 2030, 439 million people will be suffering from the disease, 90-95% of whom will have type 2 diabetes (T2D). In 2017, 5 million deaths globally were attributable to T2D, placing it in the top 10 global causes of death. Because T2D is a result of both genetic and environmental factors, identification of individuals with high genetic risk can help direct early interventions to prevent progression to more serious complications. Genome-wide association studies have identified ~400 variants associated with T2D that can be used to calculate polygenic risk scores (PRS). Although PRSs are not currently more accurate than clinical predictors and do not yet predict risk with equal accuracy across all ethnic populations, they have several potential clinical uses. Here, we discuss potential usages of PRS for predicting T2D and for informing and optimising interventions. We also touch on possible health inequality risks of PRS and the feasibility of large-scale implementation of PRS in clinical practice. Before PRSs can be used as a therapeutic tool, it is important that further polygenic risk models are derived using non-European genome-wide association studies to ensure that risk prediction is accurate for all ethnic groups. Furthermore, it is essential that the ethical, social and legal implications of PRS are considered before their implementation in any context.


2021 ◽  
Author(s):  
Minako Imamura ◽  
Atsushi Takahashi ◽  
Masatoshi Matsunami ◽  
Momoko Horikoshi ◽  
Minoru Iwata ◽  
...  

Abstract Several reports have suggested that genetic susceptibility contributes to the development and progression of diabetic retinopathy. We aimed to identify genetic loci that confer susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. We analysed 5 790 508 single nucleotide polymorphisms (SNPs) in 8880 Japanese patients with type 2 diabetes, 4839 retinopathy cases and 4041 controls, as well as 2217 independent Japanese patients with type 2 diabetes, 693 retinopathy cases, and 1524 controls. The results of these two genome-wide association studies (GWAS) were combined with an inverse variance meta-analysis (Stage-1), followed by de novo genotyping for the candidate SNP loci (p < 1.0 × 10−4) in an independent case–control study (Stage-2, 2260 cases and 723 controls). After combining the association data (Stage-1 and -2) using meta-analysis, the associations of two loci reached a genome-wide significance level: rs12630354 near STT3B on chromosome 3, p = 1.62 × 10−9, odds ratio (OR) = 1.17, 95% confidence interval (CI) 1.11–1.23, and rs140508424 within PALM2 on chromosome 9, p = 4.19 × 10−8, OR = 1.61, 95% CI 1.36–1.91. However, the association of these two loci were not replicated in Korean, European, or African American populations. Gene-based analysis using Stage-1 GWAS data identified a gene-level association of EHD3 with susceptibility to diabetic retinopathy (p = 2.17 × 10−6). In conclusion, we identified two novel SNP loci, STT3B and PALM2, and a novel gene, EHD3, that confers susceptibility to diabetic retinopathy; however, further replication studies are required to validate these associations.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Minako Imamura ◽  
Atsushi Takahashi ◽  
Toshimasa Yamauchi ◽  
Kazuo Hara ◽  
Kazuki Yasuda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document