scholarly journals The X-Ray Spectra of Cygnus XR-1 and the Crab Nebula

1968 ◽  
Vol 1 ◽  
pp. 202-205
Author(s):  
Laurence E. Peterson

In this paper we wish to present briefly the latest results which have been obtained on the hard X-ray spectra of two strong sources in the Northern skies. These observations, which have been discussed in detail previously (Peterson et al., 1967), were made from balloons launched at Palestine, Texas, to 3 gm/cm2 atmospheric depth during September 1966. The Crab Nebula and the Cygnus XR-1 were observed to have a differential number power law spectra with an index of about –2 over the 20–200 keV range. Both sources have the same intensity within about 10%. The Crab Nebula has been observed on two occasions, one year apart, and showed no change in intensity over this range at about a 5% significance level.

1970 ◽  
Vol 37 ◽  
pp. 247-249
Author(s):  
Krishna M. V. Apparao

The electromagnetic spectrum of the Crab Nebula has been determined experimentally in the radio, optical, and X-ray regions [1], in which it follows a power law of the type S(v) = Av−α, where S(v) is the power (in watts/m2 sec Hz), A and α are constants, and v is the frequency in Hz. Recent measurements [2–5], however, show a deviation from a power law in the microwave region (see Figure 1). In this paper, we investigate the origin of this deviation and calculate the γ-Ray spectrum due to this increase in the microwave photons via the Compton scattering from high-energy electrons.


1970 ◽  
Vol 37 ◽  
pp. 59-80
Author(s):  
Laurence E. Peterson

Observations to determine the spectra and time variations of hard X-rays from cosmic sources have been made from balloons and from the OSO-III satellite. These data have been obtained using actively collimated scintillation counters with apertures between 6 and 24° FWHM, areas between 10 and 50 cm2 and which operate over the 10–300 keV range. The Crab Nebula has been observed on three occasions over a 22-month period between September 1965 and July 1967. The power law spectrum has a number index of 2.0 ± 0.1. No long-term changes were observed over the 30–100 keV range with a limit at 3%/yr. A balloon search with a 10 cm2 Ge(Li) detector for X-ray lines at 62.5 keV, 110 keV and 180 keV due to heavy element radioactive decays which would be produced in the initial Crab explosion based on the Cf254 hypothesis has resulted in upper limits at about 10−3 γ-rays cm2-sec. This is about a factor of 20 above the predicted levels. Simultaneous X-ray and optical observations of SCO XR-1 from OSO-III confirm that X-ray and optical flaring are indeed coincident phenomena, and that although the X-ray intensity increases about a factor of two during the flare, the equivalent temperature of the excess radiation is nearly the same as that of the quiescent object. Upper limits, 95% confidence, on the flux of M-87 at 40 keV have been obtained. These are inconsistent with the flux of 1.2 × 10−4 photons/cm2-sec-keV reported in the literature. CYG X-1 has been observed to have a power law of number index 2.0 ± 0.2. The OSO-III has observed a number of sources in the southern skies including NOR XR-2 and the variable source Centaurus XR-2.


1968 ◽  
Vol 46 (10) ◽  
pp. S437-S443 ◽  
Author(s):  
Laurence E. Peterson ◽  
Allan S. Jacobson ◽  
R. M. Pelling ◽  
Daniel A. Schwartz

Observations of cosmic X-ray sources have been made from high-altitude balloons over Palestine, Texas, using actively collimated detectors. In this technique, a thin NaI central counter 10 to 50 cm2 in area is surrounded by a CsI well crystal shield several centimeters thick. The aperture, about 8° to 20° FWHM, is determined by either the well opening or an active honeycomb collimator. The background is determined mainly by diffuse cosmic and atmospheric X-rays entering the forward aperture. The detector is usually either servo-controlled to track the source or operated as a meridian device. Data are telemetered over the 20–250 keV range in a digital format from a 128-channel pulse-height analyzer. Several strong sources in the northern hemispheric sky have been observed. The Crab nebula has a power-law differential number spectrum with an index of –1.9 ± 0.1 and an intensity of about 10−2 photons/cm2-s-keV at 20 keV. Two observations in September 1965 and September 1966 on this object give the same flux and spectral index within about 5% over the 20–100 keV range. The source Cygnus XR-1 also has a power-law shape, very similar in slope and intensity to the Crab, which extends above background to at least 180 keV. These measurements are in general agreement with those of other workers. The power-law spectrum of the Crab and Cygnus XR-1 may be contrasted with that of SCO XR-1, which has an exponential spectrum, typical of a hot gas at 50 × 106 °K.


2020 ◽  
Author(s):  
Satoru Katsuda ◽  
Hitoshi Fujiwara ◽  
Yoshitaka Ishisaki ◽  
Yoshitomo Maeda ◽  
Koji Mori ◽  
...  

2013 ◽  
Vol 65 (4) ◽  
pp. 74 ◽  
Author(s):  
Tomomi Kouzu ◽  
Makoto S. Tashiro ◽  
Yukikatsu Terada ◽  
Shin’ya Yamada ◽  
Aya Bamba ◽  
...  

1971 ◽  
Vol 46 ◽  
pp. 394-406
Author(s):  
F. Pacini

The Crab Nebula pulsar conforms to the model of a rotating magnetised neutron star in the rate of energy generation and the exponent of the rotation law.It is suggested that the main pulse is due to electrons and the precursor to protons. Both must radiate in coherent bunches. Optical and X-ray radiation is by the synchrotron process.The wisps observed in the Nebula may represent the release of an instability storing about 1043 erg and 1047–48 particles.Finally, some considerations are made about the general relation between supernova remnants and rotating neutron stars.


1971 ◽  
Vol 46 ◽  
pp. 296-307 ◽  
Author(s):  
D. B. Melrose

Observed enhanced activity in the central region of the Crab Nebula following the spin-up of the pulsar is discussed from the point of view of the transfer of energy to relativistic electrons. It is argued that a rapid deposition of energy associated with the spin-up of the pulsar causes a radial energy flux which becomes a flux in hydromagnetic activity at about the regions where enhanced synchrotron emission is observed. It is shown that such hydromagnetic activity is rapidly damped by the relativistic electrons with energy being transferred to the relativistic electrons. This acceleration can account for the short synchrotron halflifetimes observed. The model predicts highly enhanced X-ray emission from the central region of the Nebula following a spin-up.


2004 ◽  
Vol 218 ◽  
pp. 181-184 ◽  
Author(s):  
Koji Mori ◽  
David N. Burrows ◽  
George G. Pavlov ◽  
J. Jeff Hester ◽  
Shinpei Shibata ◽  
...  

We present year-scale morphological variations of the Crab Nebula revealed by the Chandra X-ray Observatory. Observations have been performed about every 1.7 years over the three years from launch. The variations are clearly recognized at two sites: the torus and the southern jet. The torus, which had been steadily expanding until 1.7 years ago, now appears to have shrunk in the latest observation. Additionally, the circular structures seen to the northeast of the torus have decayed into several arcs. On the other hand, the southern jet shows the growth of its overall kinked-structure. We discuss the nature of these variations in terms of the pulsar wind nebula mechanism.


Sign in / Sign up

Export Citation Format

Share Document