scholarly journals Fractionation of the Solar Wind

1995 ◽  
Vol 10 ◽  
pp. 310-312 ◽  
Author(s):  
R. Von Steiger

The composition of the solar wind (SW) is not a true sample of the solar composition, but it is fractionated with respect to the solar photosphere. This fractionation follows the well-known first ionization potential (FIP) pattern: When plotting the SW abundances with respect to the solar abundances as a function of FIP, a step function is obtained (Fig. 1). The step at ∼ 10eV has a height of 3-5 in the slow SW, but this is reduced to 1.5-2 in the fast streams, which originate in the coronal holes. The data given in Fig. 1 are collected and discussed in von Steiger & Geiss (1994), including the “FIP exceptions”, Kr and Xe.The process leading to the observed overabundance of the low-FIPs has been located to operate by atom-ion separation across magnetic field lines in the chromosphere (Geiss, 1982), because this is the only region of the solar atmosphere where a significant fraction of the gas is neutral. The fractionated abundances observed in the S W are thus important tracers for processes and conditions at this site.

1983 ◽  
Vol 102 ◽  
pp. 473-477
Author(s):  
H. Biernat ◽  
N. Kömle ◽  
H. Rucker

In the vicinity of the Sun — especially above coronal holes — the magnetic field lines show strong non-radial divergence and considerable curvature (see e.g. Kopp and Holzer, 1976; Munro and Jackson, 1977; Ripken, 1977). In the following we study the influence of these characteristics on the expansion velocity of the solar wind.


Author(s):  
Mingming Meng ◽  
Ying Liu ◽  
Chong Chen ◽  
Rui Wang

Abstract The S-shaped magnetic structure in the solar wind formed by the twisting of magnetic field lines is called a switchback, whose main characteristics are the reversal of the magnetic field and the significant increase in the solar wind radial velocity. We identify 242 switchbacks during the first two encounters of Parker Solar Probe (PSP). Statistics methods are applied to analyze the distribution and the rotation angle and direction of the magnetic field rotation of the switchbacks. The diameter of switchbacks is estimated with a minimum variance analysis (MVA) method based on the assumption of a cylindrical magnetic tube. We also make a comparison between switchbacks from inside and the boundary of coronal holes. The main conclusions are as follows: (1) the rotation angles of switchbacks observed during the first encounter seem larger than those of the switchbacks observed during the second encounter in general; (2) the tangential component of the velocity inside the switchbacks tends to be more positive (westward) than in the ambient solar wind; (3) switchbacks are more likely to rotate clockwise than anticlockwise, and the number of switchbacks with clockwise rotation is 1.48 and 2.65 times of those with anticlockwise rotation during the first and second encounters, respectively; (4) the diameter of switchbacks is about 10^5 km on average and across five orders of magnitude (10^3 – 10^7 km).


2019 ◽  
Vol 15 (S354) ◽  
pp. 215-223
Author(s):  
Barbara Perri ◽  
Allan Sacha Brun ◽  
Antoine Strugarek ◽  
Victor Réville

AbstractThough generated deep inside the convection zone, the solar magnetic field has a direct impact on the Earth space environment via the Parker spiral. It strongly modulates the solar wind in the whole heliosphere, especially its latitudinal and longitudinal speed distribution over the years. However the wind also influences the topology of the coronal magnetic field by opening the magnetic field lines in the coronal holes, which can affect the inner magnetic field of the star by altering the dynamo boundary conditions. This coupling is especially difficult to model because it covers a large variety of spatio-temporal scales. Quasi-static studies have begun to help us unveil how the dynamo-generated magnetic field shapes the wind, but the full interplay between the solar dynamo and the solar wind still eludes our understanding.We use the compressible magnetohydrodynamical (MHD) code PLUTO to compute simultaneously in 2.5D the generation and evolution of magnetic field inside the star via an α-Ω dynamo process and the corresponding evolution of a polytropic coronal wind over several activity cycles for a young Sun. A multi-layered boundary condition at the surface of the star connects the inner and outer stellar layers, allowing both to adapt dynamically. Our continuously coupled dynamo-wind model allows us to characterize how the solar wind conditions change as a function of the cycle phase, and also to quantify the evolution of integrated quantities such as the Alfvén radius. We further assess the impact of the solar wind on the dynamo itself by comparing our results with and without wind feedback.


1977 ◽  
Vol 36 ◽  
pp. 421-445 ◽  
Author(s):  
J.B. Zirker

Coronal holes are regions of depressed density and temperature in the inner corona that coincide with open magnetic field lines. They were recognized for many years on eclipse photographs, but real understanding of their importance began to emerge only after data from rocket and satellite observations were analyzed. Wilson (1976) has summarized the early history of research on coronal holes.


2017 ◽  
Vol 13 (S335) ◽  
pp. 307-309
Author(s):  
Ljubomir Nikolić

AbstractThe potential-field source-surface (PFSS) model of the solar corona is a widely used tool in the space weather research and operations. In particular, the PFSS model is used in solar wind forecast models which empirically associate solar wind properties with the numerically derived coronal magnetic field. In the PFSS model, the spherical surface where magnetic field lines are forced to open is typically placed at 2.5 solar radii. However, the results presented here suggest that setting this surface (the source-surface) to lower heights can provide a better agreement between observed and modelled coronal holes during the current solar cycle. Furthermore, the lower heights of the source-surface provide a better match between observed and forecasted solar wind speed.


2019 ◽  
Vol 492 (1) ◽  
pp. 39-44 ◽  
Author(s):  
D Stansby ◽  
L Matteini ◽  
T S Horbury ◽  
D Perrone ◽  
R D’Amicis ◽  
...  

ABSTRACT Although the origins of slow solar wind are unclear, there is increasing evidence that at least some of it is released in a steady state on overexpanded coronal hole magnetic field lines. This type of slow wind has similar properties to the fast solar wind, including strongly Alfvénic fluctuations. In this study, a combination of proton, alpha particle, and electron measurements are used to investigate the kinetic properties of a single interval of slow Alfvénic wind at 0.35 au. It is shown that this slow Alfvénic interval is characterized by high alpha particle abundances, pronounced alpha–proton differential streaming, strong proton beams, and large alpha-to-proton temperature ratios. These are all features observed consistently in the fast solar wind, adding evidence that at least some Alfvénic slow solar wind also originates in coronal holes. Observed differences between speed, mass flux, and electron temperature between slow Alfvénic and fast winds are explained by differing magnetic field geometry in the lower corona.


2003 ◽  
Vol 21 (8) ◽  
pp. 1709-1722 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
J. A. Wild

Abstract. We calculate the azimuthal magnetic fields expected to be present in Saturn’s magnetosphere associated with two physical effects, and compare them with the fields observed during the flybys of the two Voyager spacecraft. The first effect is associated with the magnetosphere-ionosphere coupling currents which result from the sub-corotation of the magnetospheric plasma. This is calculated from empirical models of the plasma flow and magnetic field based on Voyager data, with the effective Pedersen conductivity of Saturn’s ionosphere being treated as an essentially free parameter. This mechanism results in a ‘lagging’ field configuration at all local times. The second effect is due to the day-night asymmetric confinement of the magnetosphere by the solar wind (i.e. the magnetopause and tail current system), which we have estimated empirically by scaling a model of the Earth’s magnetosphere to Saturn. This effect produces ‘leading’ fields in the dusk magnetosphere, and ‘lagging’ fields at dawn. Our results show that the azimuthal fields observed in the inner regions can be reasonably well accounted for by plasma sub-corotation, given a value of the effective ionospheric Pedersen conductivity of ~ 1–2 mho. This statement applies to field lines mapping to the equator within ~ 8 RS (1 RS is taken to be 60 330 km) of the planet on the dayside inbound passes, where the plasma distribution is dominated by a thin equatorial heavy-ion plasma sheet, and to field lines mapping to the equator within ~ 15 RS on the dawn side outbound passes. The contributions of the magnetopause-tail currents are estimated to be much smaller than the observed fields in these regions. If, however, we assume that the azimuthal fields observed in these regions are not due to sub-corotation but to some other process, then the above effective conductivities define an upper limit, such that values above ~ 2 mho can definitely be ruled out. Outside of this inner region the spacecraft observed both ‘lagging’ and ‘leading’ fields in the post-noon dayside magnetosphere during the inbound passes, with ‘leading’ fields being observed both adjacent to the magnetopause and in the ring current region, and ‘lagging’ fields being observed between. The observed ‘lagging’ fields are consistent in magnitude with the sub-corotation effect with an effective ionospheric conductivity of ~ 1–2 mho, while the ‘leading’ fields are considerably larger than those estimated for the magnetopause-tail currents, and appear to be indicative of the presence of another dynamical process. No ‘leading’ fields were observed outside the inner region on the dawn side outbound passes, with the azimuthal fields first falling below those expected for sub-corotation, before increasing, to exceed these values at radial distances beyond ~ 15–20 RS , where the effect of the magnetopause-tail currents becomes significant. As a by-product, our investigation also indicates that modification and scaling of terrestrial magnetic field models may represent a useful approach to modelling the three-dimensional magnetic field at Saturn.Key words. Magnetospheric physics (current systems; magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)


2002 ◽  
Vol 20 (3) ◽  
pp. 311-320 ◽  
Author(s):  
J. Mĕrka ◽  
J. Šafránková ◽  
Z. Nĕmeček

Abstract. The width of the cusp region is an indicator of the strength of the merging process and the degree of opening of the magnetosphere. During three years, the Magion-4 satellite, as part of the Interball project, has collected a unique data set of cusp-like plasma observations in middle and high altitudes. For a comparison of high- and low-altitude cusp determination, we map our observations of cusp-like plasma along the magnetic field lines down to the Earth’s surface. We use the Tsyganenko and Stern 1996 model of the magnetospheric magnetic field for the mapping, taking actual solar wind and IMF parameters from the Wind observations. The footprint positions show substantial latitudinal dependence on the dipole tilt angle. We fit this dependence with a linear function and subtract this function from observed cusp position. This process allows us to study both statistical width and location of the inspected region as a function of the solar wind and IMF parameters. Our processing of the Magion-4 measurements shows that high-altitude regions occupied by the cusp-like plasma (cusp and cleft) are projected onto a much broader area (in magnetic local time as well as in a latitude) than that determined in low altitudes. The trends of the shift of the cusp position with changes in the IMF direction established by low-altitude observations have been confirmed.Key words. Magnetospheric physics (magnetopause, cusp and boundary layer; solar wind – magnetosphere interactions)


Sign in / Sign up

Export Citation Format

Share Document