scholarly journals Recent Results on Magnetic Fields in the Milky Way

2002 ◽  
Vol 12 ◽  
pp. 719-720
Author(s):  
R. Wielebinski ◽  
W. Reich ◽  
E. Fürst

AbstractOf all the methods available to observe magnetic fields in the Milky Way, the mapping of linear polarization at cm wavelengths has proven to be most successful. The instruments that have contributed most of the new data are the 100 m Effelsberg telescope and the Parkes 64 m dish. Their Galactic plane surveys gave us a new conception of the linear polarization distribution. A new Effelsberg 1.4 GHz ‘medium latitude polarization survey’ now being made gives us data about large sections of the Galaxy. Polarization maps of selected regions of the Galaxy are now being made at several frequencies up to 32 GHz. Data from Westerbork at ∼ 325 MHz, as well as data from the Canadian Galactic Plane Survey (CGPS) at 1.4 GHz give new exciting information.

1988 ◽  
Vol 126 ◽  
pp. 37-48
Author(s):  
Robert Zinn

Harlow Shapley (1918) used the positions of globular clusters in space to determine the dimensions of our Galaxy. His conclusion that the Sun does not lie near the center of the Galaxy is widely recognized as one of the most important astronomical discoveries of this century. Nearly as important, but much less publicized, was his realization that, unlike stars, open clusters, HII regions and planetary nebulae, globular clusters are not concentrated near the plane of the Milky Way. His data showed that the globular clusters are distributed over very large distances from the galactic plane and the galactic center. Ever since this discovery that the Galaxy has a vast halo containing globular clusters, it has been clear that these clusters are key objects for probing the evolution of the Galaxy. Later work, which showed that globular clusters are very old and, on average, very metal poor, underscored their importance. In the spirit of this research, which started with Shapley's, this review discusses the characteristics of the globular cluster system that have the most bearing on the evolution of the Galaxy.


1985 ◽  
Vol 106 ◽  
pp. 203-204
Author(s):  
W.H. Mccutcheon ◽  
B. J. Robinson ◽  
R. N. Manchester ◽  
J. B. Whiteoak

The southern galactic-plane region, in the ranges 294° ≤ 1 ≤ 358°, −0°.075 ≤ b ≤ 0°.075, has been surveyed in the J = 1–0 line of 12CO with a sampling interval of 3′ arc. Observations were made with the 4-metre telescope at the CSIRO Division of Radiophysics in 1980 and 1981. Details of equipment and observing procedure are given in Robinson et al. (1982, 1983); see also McCutcheon et al. (1983).


2002 ◽  
Vol 199 ◽  
pp. 262-267
Author(s):  
Richard Wielebinski

Radio sky surveys give us basic information about the origin of the radio emission from the Galaxy. By mapping the sky at several radio frequencies a separation of the thermal and non-thermal emission components is possible. The major part of the low-frequency radio emission comes from the synchrotron process, the braking of relativistic electrons in magnetic fields. By mapping the linear polarization at several frequencies (required for the correction of the Faraday rotation) the orientation of the magnetic fields in the emitting regions can be deduced. Older all-sky surveys at 30, 150 and 408 MHz have now been supplemented by new observations of the Galaxy at 45 and 1420 MHz. These surveys, in addition to being important as tracers of the morphology of the magnetic fields in the Galaxy, are also required to correct for the ‘foreground’ features in cosmological studies of the COBE data and the PLANCK surveys in the future. Studies of the Galaxy in polarization have been made some years ago indicating high percentage of linear polarization in various directions. More recent work with good angular resolution has shown spectacular polarized intensity structures in selected regions. Low-frequency data with good angular resolution are urgently required for the interpretation of these features.Observations of nearby galaxies in radio continuum (both total power and polarized intensity) have given us the possibility to study magnetic fields in objects at known distances. Polarization observations of nearby galaxies have confirmed the existence of regular magnetic fields in practically every object so far studied. Originally data were obtained from large single-dish telescopes, notably from Effelsberg and Parkes. These data were greatly enhanced by the addition of higher resolution components from the VLA and ATCA respectively. These results indicate surprisingly homogeneous magnetic fields in most galaxies. High angular resolution observations with the GMRT at lower radio frequencies will add a new dimension to the data on galaxies.


2019 ◽  
Vol 629 ◽  
pp. A70 ◽  
Author(s):  
J. H. J. Hagen ◽  
A. Helmi ◽  
P. T. de Zeeuw ◽  
L. Posti

The velocity distribution of stars is a sensitive probe of the gravitational potential of the Galaxy, and hence of its dark matter distribution. In particular, the shape of the dark halo (e.g. spherical, oblate, or prolate) determines velocity correlations, and different halo geometries are expected to result in measurable differences. Here we explore and interpret the correlations in the (vR, vz)-velocity distribution as a function of position in the Milky Way. We selected a high-quality sample of stars from the Gaia DR2 catalogue and characterised the orientation of the velocity distribution or tilt angle over a radial distance range of [4 − 13] kpc and up to 3.5 kpc away from the Galactic plane while taking into account the effects of the measurement errors. We find that the tilt angles change from spherical alignment in the inner Galaxy (R ∼ 4 kpc) towards more cylindrical alignments in the outer Galaxy (R ∼ 11 kpc) when using distances that take a global zero-point offset in the parallax of −29 μas. However, if the amplitude of this offset is underestimated, then the inferred tilt angles in the outer Galaxy only appear shallower and are intrinsically more consistent with spherical alignment for an offset as large as −54 μas. We further find that the tilt angles do not seem to strongly vary with Galactic azimuth and that different stellar populations depict similar tilt angles. Therefore we introduce a simple analytic function that describes the trends found over the full radial range. Since the systematic parallax errors in Gaia DR2 depend on celestial position, magnitude, and colour in complex ways, it is not possible to fully correct for them. Therefore it will be particularly important for dynamical modelling of the Milky Way to thoroughly characterise the systematics in astrometry in future Gaia data releases.


2019 ◽  
Vol 489 (4) ◽  
pp. 4565-4573
Author(s):  
Richa Kundu ◽  
José G Fernández-Trincado ◽  
Dante Minniti ◽  
Harinder P Singh ◽  
Edmundo Moreno ◽  
...  

ABSTRACTWe report the identification of possible extended star debris candidates beyond the cluster tidal radius of NGC 6362 based on the second Gaia data release (Gaia DR2). We found 259 objects possibly associated with the cluster lying in the vicinity of the giant branch and 1–2 magnitudes fainter/brighter than the main-sequence turn-off in the cluster colour–magnitude diagram and which cover an area on the sky of ∼4.1 deg2 centred on the cluster. We traced back the orbit of NGC 6362 in a realistic Milky Way potential, using the gravpot16 package, for 3 Gyr. The orbit shows that the cluster shares similar orbital properties as the inner disc, having peri-/apogalactic distances, and maximum vertical excursion from the Galactic plane inside the corotation radius (CR), moving inwards from CR radius to visit the inner regions of the Milky Way. The dynamical history of the cluster reveals that it has crossed the Galactic disc several times in its lifetime and has recently undergone a gravitational shock, ∼15.9 Myr ago, suggesting that less than 0.1 per cent of its mass has been lost during the current disc-shocking event. Based on the cluster’s orbit and position in the Galaxy, we conclude that the possible extended star debris candidates are a combined effect of the shocks from the Galactic disc and evaporation from the cluster. Lastly, the evolution of the vertical component of the angular momentum shows that the cluster is strongly affected dynamically by the Galactic bar potential.


1990 ◽  
Vol 140 ◽  
pp. 215-218 ◽  
Author(s):  
S. Sukumar ◽  
R.J. Allen

Recent VLA 20 cm radio continuum observations of the southern face-on barred spiral M83 reveal that the magnetic field is very highly aligned at the outer regions (~12 kpc radius) and totally disrupted in the inner regions (<6 kpc) of the galaxy. The RM variation suggests an axisymmetric morphology for the magnetic field. VLA 6 cm continuum polarization observations of the edge-on spiral NGC 891 reveal ordered magnetic fields at large Z-distances (~3 kpc) from the galactic plane, probably emanating from the disk through instabilities.


2019 ◽  
Vol 621 ◽  
pp. A127 ◽  
Author(s):  
I. M. Polderman ◽  
M. Haverkorn ◽  
T. R. Jaffe ◽  
M. I. R. Alves

Context. Cosmic rays (CRs) and magnetic fields are dynamically important components in the Galaxy, and their energy densities are comparable to that of the turbulent interstellar gas. The interaction of CRs and Galactic magnetic fields (GMF) produces synchrotron radiation clearly visible in the radio regime. Detailed measurements of synchrotron radiation averaged over the line-of-sight (LOS), so-called synchrotron emissivities, can be used as a tracer of the CR density and GMF strength. Aims. Our aim is to model the synchrotron emissivity in the Milky Way using a three-dimensional dataset instead of LOS-integrated intensity maps on the sky. Methods. Using absorbed HII regions, we measured the synchrotron emissivity over a part of the LOS through the Galaxy, changing from a two-dimensional to a three-dimensional view. Performing these measurements on a large scale is one of the new applications of the window opened by current low-frequency arrays. Using various simple axisymmetric emissivity models and a number of GMF-based emissivity models, we were able to simulate the synchrotron emissivities and compare them to the observed values in the catalog. Results. We present a catalog of low-frequency absorption measurements of HII regions, their distances and electron temperatures, compiled from literature. These data show that the axisymmetric emissivity models are not complex enough, but the GMF-based emissivity models deliver a reasonable fit. These models suggest that the fit can be improved by either an enhanced synchrotron emissivity in the outer reaches of the Milky Way or an emissivity drop near the Galactic center. Conclusions. Current GMF models plus a constant CR density model cannot explain low-frequency absorption measurements, but the fits improved with slight (ad hoc) adaptations. It is clear that more detailed models are needed, but the current results are very promising.


2021 ◽  
Vol 503 (4) ◽  
pp. 5868-5876
Author(s):  
Florent Renaud ◽  
Oscar Agertz ◽  
Eric P Andersson ◽  
Justin I Read ◽  
Nils Ryde ◽  
...  

ABSTRACT Using the cosmological zoom simulation VINTERGATAN, we present a new scenario for the onset of star formation at the metal-poor end of the low-[α/Fe] sequence in a Milky Way-like galaxy. In this scenario, the galaxy is fuelled by two distinct gas flows. One is enriched by outflows from massive galaxies, but not the other. While the former feeds the inner galactic region, the latter fuels an outer gas disc, inclined with respect to the main galactic plane, and with a significantly poorer chemical content. The first passage of the last major merger galaxy triggers tidal compression in the outer disc, which increases the gas density and eventually leads to star formation, at a metallicity 0.75 dex lower than the inner galaxy. This forms the first stars of the low-[α/Fe] sequence. These in situ stars have halo-like kinematics, similar to what is observed in the Milky Way, due to the inclination of the outer disc that eventually aligns with the inner one via gravitational torques. We show that this tilting disc scenario is likely to be common in Milky Way-like galaxies. This process implies that the low-[α/Fe] sequence is populated in situ, simultaneously from two formation channels, in the inner and the outer galaxy, with distinct metallicities. This contrasts with purely sequential scenarios for the assembly of the Milky Way disc and could be tested observationally.


2012 ◽  
Vol 8 (S287) ◽  
pp. 492-496
Author(s):  
Michele Pestalozzi

AbstractMethanol masers are known to be among the most reliable tracers of high-mass stars in early stages of evolution. A number of searches across the Galaxy has yielded to date, a complete census of those masers in two thirds of the Milky Way, providing a catalogue of some 800 sources to be studied in depth. In particular, it is important to characterise the physical properties of the objects hosting methanol masers, and this is possible today using data from the Herschel Space Observatory (HSO). The exceptional spatial resolution of HSO and its wavelength coverage are perfectly tuned to put the methanol maser phase into its star formation context. This paper presents results on the characterisation of methanol maser hosts using Herschel data from the Hi-GAL project, an Open Time Key Project to survey the inner Galactic plane at 5 wavelengths between 70 and 500 μm.


2007 ◽  
Vol 3 (S242) ◽  
pp. 218-222
Author(s):  
James A. Green ◽  
R. J. Cohen ◽  
J. L. Caswell ◽  
G. A. Fuller ◽  
K. Brooks ◽  
...  

AbstractA new 7-beam methanol multibeam receiver is being used to survey the Galaxy for newly forming massive stars, that are pinpointed by strong methanol maser emission at 6.668 GHz. The receiver, jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF), was successfully commissioned at Parkes in January 2006. The Parkes-Jodrell survey of the Milky Way for methanol masers is two orders of magnitude faster than previous systematic surveys using 30-m class dishes, and is the first systematic survey of the entire Galactic plane. The first 53 days of observations with the Parkes telescope have yielded 518 methanol sources, of which 218 are new discoveries. We present the survey methodology as well as preliminary results and analysis.


Sign in / Sign up

Export Citation Format

Share Document