Auger Electron Spectroscopy and Its Application to Nanotechnology

2011 ◽  
Vol 19 (2) ◽  
pp. 12-15 ◽  
Author(s):  
S. N. Raman ◽  
D. F. Paul ◽  
J. S. Hammond ◽  
K. D. Bomben

Over the past decade, the field of nanotechnology has expanded, and the most heavily used nanoscale characterization/imaging techniques have been scanning probe microscopy (SPM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Although these high-resolution imaging techniques help visualize nanostructures, it is essential to understand the chemical nature of these materials and their growth mechanisms. Surface modifications in the first few nanometers can alter the bulk properties of these nanostructures, and conventional characterization techniques, including energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS) associated with SEM and TEM are not suited to detecting these surface modifications except in special, favorable specimens. A modern state-of-the-art scanning Auger electron spectroscopy (AES) instrument provides valuable elemental and chemical characterization of nanostructures with a lateral spatial resolution better than 10 nm and a depth resolution of a few nm. In this article we review the technique of scanning AES and highlight its unique analytical capabilities in the areas of nanotechnology, metallurgy, and semiconductors.

1990 ◽  
Vol 185 ◽  
Author(s):  
Alain E. Kaloyeros ◽  
Robert M. Ehrenreich

AbstractPhosphorus is found to be a common impurity in many of the iron tools and weapons produced during the pre-Roman and Roman Iron Ages of Britain (600 BC - 300 AD). The effects of this impurity on the properties and performance of antiquarian materials is not well understood, however. This paper presents the initial findings of an in-depth study of the distribution, chemistry, and effects of phosphorus in Romano-British ironwork. For this purpose, two Romano-British iron artifacts from the site of Ircheoter, Northamptonshire, were examined using powerful techniques for archeological materials analysis that include electron microprobe, secondary ion mass spectroscopy (SIMS), transmission electron microscopy (TEM) with energydispersive x-ray spectroscopy capabilities (EDXS), and Auger electron spectroscopy (AES). It was found that phosphorous was indeed present in the artifacts. The phosphorus atoms were predominantly segregated at grain boundaries and thus should have led to a lowering of grain boundary cohesion and a degradation in the performance of the tools.


Sign in / Sign up

Export Citation Format

Share Document