Turbulent Film Condensation on a Nonisothermal Horizontal Tube

2005 ◽  
Vol 21 (4) ◽  
pp. 235-242 ◽  
Author(s):  
Yan-Ting Lin ◽  
Sheng-An Yang

AbstractA simple model has been developed for the study of turbulent film condensation from downward flowing vapors onto a horizontal circular tube with variable wall temperature. The interfacial shear at the vapor condensate film is evaluated with the help of Colburn analogy. The condensate film flow and local/or mean heat transfer characteristics from a horizontal tube with non-uniform temperature variation under the effect of Froude number, sub-cooling parameter and system pressure parameter has been conducted. Although the non-uniform wall temperature variation has an appreciable influence on the local film flow and heat transfer; however, the dependence of mean heat transfer on the non-uniform wall temperature variation is almost negligible.

Author(s):  
Masoud Darbandi ◽  
Ehsan Asgari ◽  
Morteza Hajikaram ◽  
Gerry E. Schneider

In this paper, we study the frost formation and growth at the walls of a duct with uniform wall temperature variation. The simulation is performed for laminar flow regime considering suitable semi-empirical models incorporated with computational fluid dynamics (CFD) method. The frost growth is considered to be normal to the duct surface. Since the duct aspect ratio is high, we perform our simulations in two-dimensional zones. To simulate the frost layer properly, we solve both the energy and mass balance equations implementing some semi-empirical correlations on the frost side. At this stage, we suitably predict the required heat flux value at the solid boundary and the heat transfer coefficient, which are required to be used in the CFD calculations in the next stage. So, next is to use the CFD tool to calculate the required heat transfer parameters at the air side. Since the frost growth is performed locally along the wall, the achieved frost growth rate can be applied at any specific location independently. We also investigate the effects of various environmental parameters on the frost growth rate. The current achieved results are verified by comparing them with previous available experimental data. After verification the numerical algorithm, we investigate the frost growth in a duct with uniform wall temperature variation. We assume that the variation of temperature would be gradually and uniform with time. We eventually present the effects of different parameters affecting the frost growth along the duct surface. One significant contribution of this work is to address the effects of inlet boundary location on the frost growth. In this regard, the inlet boundary is placed initially at real entrance and then at a location far upstream of the real entrance. We evaluate the effect of this boundary location on frost thickness. The use of CFD is unavoidable in this study because we need its capability to compute the required wall heat flux condition, which is an input to our semi-empirical analysis in this problem with an unsteady thermal boundary condition situation, in which the wall temperature continuously varies with time. It should be noted that, our chosen empirical method estimate the wall heat flux based on the Nusselt number value. Therefore, CFD largely helps to correct the actual heat flux at the airside. Another contribution of this work is to study frost formation in confined flow cases, in which the flow is developing both hydrodynamically and thermally. Evidently this is in contrast to the frost growth over a simple flat plate like geometry.


Author(s):  
Hua Sheng Wang ◽  
John W. Rose

A recent model for condensation in microchannels by the authors has been modified to investigate the effect of channel inclination. Provisional results are obtained for the case studied earlier for horizontal channels i.e. for R134a with saturated vapour at inlet and prescribed uniform wall temperature. Calculations give distributions around the channel perimeter of condensate film thickness and heat flux from which the mean (around the channel perimeter) heat flux and heat-transfer coefficient are found. Results are presented for square channels with side 0.5, 1.0 and 3.0 mm.


2013 ◽  
Vol 561 ◽  
pp. 460-465
Author(s):  
Dong Hui Zhang ◽  
Jiao Gao

The objective of this paper is to study the characteristic of a circular tube with a built-in arc belt on fluid flow and heat transfer in uniform wall temperature flows. Numerical simulations for hydrodynamically laminar flow was direct ran at Re between 600 and 1800. Preliminary results on velocity and temperature statistics for uniform wall temperature show that, arc belt can swirl the pipe fluid, so that the fluid at the center of the tube and the fluid of the boundary layer of the wall can mix fully, and plays the role of enhanced heat transfer, but also significantly increases the resistance of the fluid and makes the resistance coefficient of the enhanced tube greater than smooth tube. The combination property PEC is all above 1.5.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Benjamin Kirollos ◽  
Thomas Povey

Gas turbine cooling system design is constrained by a maximum allowable wall temperature (dictated by the material, the life requirements of the component, and a given stress distribution), the desire to minimize coolant mass flow rate (requirement to minimize cycle-efficiency cost), and the requirement to achieve as close to uniform wall temperature as possible (to reduce thermal gradients, and stress). These three design requirements form the basis of an iterative design process. The relationship between the requirements has received little discussion in the literature, despite being of interest from both a theoretical and a practical viewpoint. In Part I, we show analytically that the coolant mass flow rate is minimized when the wall temperature is uniform and equal to the maximum allowable wall temperature. In this paper, we show that designs optimized for uniform wall temperature have a corresponding optimum internal heat transfer coefficient (HTC) distribution. In this paper, analytical expressions for the optimum internal HTC distribution are derived for a number of cooling systems, with and without thermal barrier coating (TBC). Most cooling systems can be modeled as a combination of these representative systems. The optimum internal HTC distribution is evaluated for a number of engine-realistic systems: long plate systems (e.g., combustors, afterburners), the suction-side (SS) of a high pressure nozzle guide vane (HPNGV), and a radial serpentine cooling passage. For some systems, a uniform wall temperature is unachievable; the coolant penalty associated with this temperature nonuniformity is estimated. A framework for predicting the optimum internal HTC for systems with any distribution of external HTC, wall properties, and film effectiveness is outlined.


Author(s):  
Benjamin Kirollos ◽  
Thomas Povey

Gas turbine cooling system design is constrained by a maximum allowable wall temperature (dictated by the material, the life requirements of the component and a given stress distribution), the desire to minimise coolant mass flow rate (requirement to minimise cycle-efficiency cost) and the requirement to achieve as close to uniform wall temperature as possible (to reduce thermal gradients, and stress). These three design requirements form the basis of an iterative design process. The relationship between the requirements has received little discussion in the literature, despite being of interest from both a theoretical and a practical viewpoint. In the companion paper, we show analytically that the coolant mass flow rate is minimised when the wall temperature is uniform and equal to the maximum allowable wall temperature. In this paper, we show that designs optimised for uniform wall temperature have a corresponding optimum internal heat transfer coefficient (HTC) distribution. In this paper, analytical expressions for the optimum internal HTC distribution are derived for a number of cooling systems, with and without thermal barrier coating. Most cooling systems can be modelled as a combination of these representative systems. The optimum internal HTC distribution is evaluated for a number of engine-realistic systems: long plate systems (e.g., combustors, afterburners), the suction-side of a high pressure nozzle guide vane, and a radial serpentine cooling passage. For some systems, a uniform wall temperature is unachievable; the coolant penalty associated with this temperature non-uniformity is estimated. A framework for predicting the optimum internal HTC for systems with any distribution of external HTC, wall properties and film effectiveness is outlined.


Sign in / Sign up

Export Citation Format

Share Document