scholarly journals New Spectral Templates of Galaxies for Multi Color Classification

2006 ◽  
Vol 2 (S235) ◽  
pp. 97-97
Author(s):  
I. Franco ◽  
K. Meisenheimer ◽  
C. Wolf ◽  
E. Bell ◽  
M. H. Nicol ◽  
...  

AbstractObservations in the Chandra Deep Field South (CDFS) have provided us with a useful set of data in the optical (COMBO-17), near-infrared (GOODS JHK), and mid-infrared (GOODS IRAC bands 1,2) wavelength regimes to test and improve a new spectral galaxy template library, designed to operate in the rest-frame wavelength range between 0.1 and 5 microns. In this range the stellar continuum and emission lines from HII regions dominate the Spectral Energy Distribution (SED) of galaxies. The new library is based on a self-consistent two-burst model, that has been developed in order to reproduce the star formation histories of different types of galaxies more accurately than single-burst histories and thus provides a better match to real galaxy spectra, as well as more reliable mass-to-light ratios. The spectral library is built by using a population synthesis code (PEGASE) assuming a Kroupa (2003) initial mass function. An old burst of exponentially decaying star formation with an initial metallicity of 0.1 solar is followed by a very recent (60 Myr old) second burst in order to reproduce the spectra of actively star forming blue galaxies. In addition, the templates include dust extinction of various strengths. For the multi-color classification the spectral library is red-shifted between z + 0 and z + 2.5 and converted into the 21 colors which have been observed by COMBO-17 plus its near- and mid-infrared extensions provided by the public GOODS data.

Author(s):  
Christian Binggeli ◽  
Erik Zackrisson ◽  
Xiangcheng Ma ◽  
Akio K Inoue ◽  
Anton Vikaeus ◽  
...  

Abstract Photometric observations of the spectroscopically confirmed z ≈ 9.1 galaxy MACS1149-JD1 have indicated the presence of a prominent Balmer break in its spectral energy distribution, which may be interpreted as due to very large fluctuations in its past star formation activity. In this paper, we investigate to what extent contemporary simulations of high-redshift galaxies produce star formation rate variations sufficiently large to reproduce the observed Balmer break of MACS1149-JD1. We find that several independent galaxy simulations are unable to account for Balmer breaks of the inferred size, suggesting that MACS1149-JD1 either must be a very rare type of object or that our simulations are missing some key ingredient. We present predictions of spectroscopic Balmer break strength distributions for z ≈ 7–9 galaxies that may be tested through observations with the upcoming James Webb Space Telescope and also discuss the impact that various assumptions on dust reddening, Lyman continuum leakage and deviations from a standard stellar initial mass function would have on the results.


2018 ◽  
Vol 609 ◽  
pp. A109 ◽  
Author(s):  
G. Nandakumar ◽  
M. Schultheis ◽  
A. Feldmeier-Krause ◽  
R. Schödel ◽  
N. Neumayer ◽  
...  

Context. The central molecular zone (CMZ) is a ~200 pc region around the Galactic centre. The study of star formation in the central part of the Milky Way is of great interest as it provides a template for the closest galactic nuclei. Aims. We present a spectroscopic follow-up of photometrically selected young stellar object (YSO) candidates in the CMZ of the Galactic centre. Our goal is to quantify the contamination of this YSO sample by reddened giant stars with circumstellar envelopes and to determine the star formation rate (SFR) in the CMZ. Methods. We obtained KMOS low-resolution near-infrared spectra (R ~ 4000) between 2.0 and 2.5 μm of sources, many of which have been previously identified by mid-infrared photometric criteria as massive YSOs in the Galactic centre. Our final sample consists of 91 stars with good signal-to-noise ratio. We separated YSOs from cool late-type stars based on spectral features of CO and Brγ at 2.3 μm and 2.16 μm, respectively. We made use of spectral energy distribution (SED) model fits to the observed photometric data points from 1.25 to 24 μm to estimate approximate masses for the YSOs. Results. Using the spectroscopically identified YSOs in our sample, we confirm that existing colour–colour diagrams and colour-magnitude diagrams are unable to efficiently separate YSOs and cool late-type stars. In addition, we define a new colour–colour criterion that separates YSOs from cool late-type stars in the H−KS vs. H −[8.0] diagram. We use this new criterion to identify YSO candidates in the |l| < 1.̊5, |b| < 0.̊5, region and use model SED fits to estimate their approximate masses. By assuming an appropriate initial mass function (IMF) and extrapolating the stellar IMF down to lower masses, we determine a SFR of ~0.046 ± 0.026 M⊙ yr-1 assuming an average age of 0.75 ± 0.25 Myr for the YSOs. This value is lower than estimates found using the YSO counting method in the literature. Conclusions. Our SFR estimate in the CMZ agrees with the previous estimates from various methods and reaffirms that star formation in the CMZ is proceeding at a lower rate than predicted by various star forming models.


2021 ◽  
Vol 21 (10) ◽  
pp. 260
Author(s):  
Cheng Cheng ◽  
Jia-Sheng Huang ◽  
Hai Xu ◽  
Gao-Xiang Jin ◽  
Chuan He ◽  
...  

Abstract The Spitzer Extended Deep Survey (SEDS) as a deep and wide mid-infrared (MIR) survey project provides a sample of 500 000+ sources spreading 1.46 square degree and a depth of 26 AB mag (3σ). Combining with the previous available data, we build a PSF-matched multi-wavelength photometry catalog from u band to 8 μm. We fit the SEDS galaxies spectral energy distributions by the local galaxy templates. The results show that the SEDS galaxy can be fitted well, indicating the high redshift galaxy (z ∼ 1) shares the same templates with the local galaxies. This study would facilitate the further study of the galaxy luminosity and high redshift mass function.


2020 ◽  
Vol 495 (2) ◽  
pp. 2088-2104
Author(s):  
Jonás Chaves-Montero ◽  
Andrew Hearin

ABSTRACT The spectral energy distribution of a galaxy emerges from the complex interplay of many physical ingredients, including its star formation history (SFH), metallicity evolution, and dust properties. Using galaxpy, a new galaxy spectral prediction tool, and SFHs predicted by the empirical model universemachine and the cosmological hydrodynamical simulation IllustrisTNG, we isolate the influence of SFH on optical and near-infrared colours from 320 to 1080 Å at z = 0. By carrying out a principal component analysis, we show that physically motivated SFH variations modify galaxy colours along a single direction in colour space: the SFH-direction. We find that the projection of a galaxy’s present-day colours on to the SFH-direction is almost completely regulated by the fraction of stellar mass that the galaxy formed over the last billion years. Together with cosmic downsizing, this results in galaxies becoming redder as their host halo mass increases. We additionally study the change in galaxy colours due to variations in metallicity, dust attenuation, and nebular emission lines, finding that these properties vary broad-band colours along distinct directions in colour space relative to the SFH-direction. Finally, we show that the colours of low-redshift Sloan Digital Sky Survey galaxies span an ellipsoid with significant extent along two independent dimensions, and that the SFH-direction is well-aligned with the major axis of this ellipsoid. Our analysis supports the conclusion that variations in SFH are the dominant influence on present-day galaxy colours, and that the nature of this influence is strikingly simple.


2012 ◽  
Vol 8 (S295) ◽  
pp. 272-281 ◽  
Author(s):  
Claudia Maraston

AbstractModelling stellar populations in galaxies is a key approach to gain knowledge on the still elusive process of galaxy formation as a function of cosmic time. In this review, after a summary of the state-of-art, I discuss three aspects of the modelling, that are particularly relevant to massive galaxies, the focus of this symposium, at low and high-redshift. These are the treatment of the Thermally-Pulsating Asymptotic Giant Branch phase, evidences of an unusual Initial Mass Function, and the effect of modern stellar libraries on the model spectral energy distribution.


2020 ◽  
Vol 640 ◽  
pp. A67
Author(s):  
O. B. Kauffmann ◽  
O. Le Fèvre ◽  
O. Ilbert ◽  
J. Chevallard ◽  
C. C. Williams ◽  
...  

We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <  z <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log(M*/M⊙) > 6 and redshifts of 0 <  z <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z >  5 galaxy samples can be reduced to < 0.01 arcmin−2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <  z <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes mUV <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.


2019 ◽  
Vol 15 (S341) ◽  
pp. 287-288
Author(s):  
Hiroto Mitani ◽  
Naoki Yoshida ◽  
Kazuyuki Omukai ◽  
Takashi Hosokawa

AbstractWe calculate the spectral energy distribution of the first galaxies which contain pre-main-sequence stars by using the stellar evolution code Modules for Experiments in Stellar Astrophysics, the spectra model BT-Settl, and the stellar population synthesis code PEGASE. We calculate the galaxy spectral energy distribution for Salpeter Initial Mass Function. We find that very young first galaxies are bright also in mid-infrared, and the contribution of pre-main-sequence stars can be significant over 0.1 Myr after a star-formation episode.


2015 ◽  
Vol 12 (S316) ◽  
pp. 77-83
Author(s):  
Michele Cignoni ◽  

AbstractI will present new results on the star formation history of 30 Doradus in the Large Magellanic Cloud based on the panchromatic imaging survey Hubble Tarantula Treasury Project (HTTP). Here the focus is on the starburst cluster NGC2070. The star formation history is derived by comparing the deepest ever optical and NIR color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PARSEC models, which include all stellar phases from pre-main sequence to post-main sequence. For the first time in this region we are able to measure the star formation using intermediate and low mass stars simultaneously. Our results suggest that NGC2070 experienced a prolonged activity. I will discuss the detailed star formation history, initial mass function and reddening distribution.


2019 ◽  
Vol 488 (4) ◽  
pp. 5029-5041 ◽  
Author(s):  
Tetsuya Hashimoto ◽  
Bunyo Hatsukade ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
Kouji Ohta ◽  
...  

ABSTRACT The event rate of long gamma-ray bursts (GRBs) is expected to be a useful tracer of cosmic star-formation history. For this purpose, it is necessary to understand what kinds of star formation/galaxies are traced by GRBs. Here we report rest-frame far-infrared (FIR) continuum detections of the GRB 070521 and 080207 host galaxies at z ∼ 2 with Atacama Large Millimeter/submillimeter Array (ALMA) bands 8 and 9. FIR photometry provides reliable star-formation rates (SFRs), because FIR emission is free from dust extinction and possible radio contamination from the long-lived afterglows of GRBs. Spectral energy distribution fitting yields 49.85$^{+72.33}_{-2.86}$ and 123.4$^{+25.19}_{-21.78}$ M⊙ yr−1 for the 070521 and 080207 hosts, respectively. The derived SFRs place them on the ‘main sequence’ of normal star-forming galaxies at z ∼ 2. The derived SFRs are significantly lower than those from radio observations. It is inferred that the observed radio fluxes in a previous study are contaminated by afterglows. ALMA marginally detected the [C ii] 158-μm emission line from the GRB 080207 host galaxy with signal-to-noise ratio (S/N) ∼ 4. This is the first detection of [C ii] 158-μm from a GRB host at z &gt; 2 and the second detection among known GRBs. The luminosity ratio of [C ii] 158 μm to FIR is 7.5 × 10−4, which is one of the smallest values among galaxies at z ∼ 1–2 with the same FIR luminosity. The ‘[C ii] deficit’ could be a new physical property with which to characterize GRB hosts at z ∼ 1–2. Possible parameters controlling the deficit include the metallicity, initial mass function and gas density.


Sign in / Sign up

Export Citation Format

Share Document