scholarly journals Caught in the Act: Witnessing a~Transforming Spiral in a Galaxy Group

2006 ◽  
Vol 2 (S235) ◽  
pp. 239-239
Author(s):  
J. Rasmussen ◽  
T. J. Ponman ◽  
J. S. Mulchaey

AbstractRam pressure stripping of galaxies is believed to be inefficient in galaxy groups, but Chandra X-ray observations of the starburst spiral NGC 2276, a member of a small galaxy group, shows that this galaxy is being stripped of its gas at a rate of ~5 M⊙ yr−1 due to its motion through hot intragroup gas. This provides direct evidence that mechanisms associated with ram pressure can strip galaxies of their gas in systems much smaller than galaxy clusters.

2020 ◽  
Vol 497 (2) ◽  
pp. 2163-2174
Author(s):  
T Pasini ◽  
M Brüggen ◽  
F de Gasperin ◽  
L Bîrzan ◽  
E O’Sullivan ◽  
...  

ABSTRACT Our understanding of how active galactic nucleus feedback operates in galaxy clusters has improved in recent years owing to large efforts in multiwavelength observations and hydrodynamical simulations. However, it is much less clear how feedback operates in galaxy groups, which have shallower gravitational potentials. In this work, using very deep Very Large Array and new MeerKAT observations from the MIGHTEE survey, we compiled a sample of 247 X-ray selected galaxy groups detected in the COSMOS field. We have studied the relation between the X-ray emission of the intra-group medium and the 1.4 GHz radio emission of the central radio galaxy. For comparison, we have also built a control sample of 142 galaxy clusters using ROSAT and NVSS data. We find that clusters and groups follow the same correlation between X-ray and radio emission. Large radio galaxies hosted in the centres of groups and merging clusters increase the scatter of the distribution. Using statistical tests and Monte Carlo simulations, we show that the correlation is not dominated by biases or selection effects. We also find that galaxy groups are more likely than clusters to host large radio galaxies, perhaps owing to the lower ambient gas density or a more efficient accretion mode. In these groups, radiative cooling of the intra-cluster medium could be less suppressed by active galactic nucleus heating. We conclude that the feedback processes that operate in galaxy clusters are also effective in groups.


2000 ◽  
Vol 174 ◽  
pp. 182-185
Author(s):  
Stephen F. Helsdon ◽  
Trevor J. Ponman

AbstractWe present the largest survey to date of the X-ray properties of loose groups. We derive relations between X-ray luminosity, temperature and velocity dispersion, and also examine the surface brightness profiles of these systems. We find significant departures from the trends seen in galaxy clusters, which we interpret as arising from the effect of galaxy winds, and we briefly compare the properties of these loose groups with those of compact groups.


2020 ◽  
Vol 638 ◽  
pp. A114 ◽  
Author(s):  
A. Finoguenov ◽  
E. Rykoff ◽  
N. Clerc ◽  
M. Costanzi ◽  
S. Hagstotz ◽  
...  

Context. Large area catalogs of galaxy clusters constructed from ROSAT All-Sky Survey provide the basis for our knowledge of the population of clusters thanks to long-term multiwavelength efforts to follow up observations of these clusters. Aims. The advent of large area photometric surveys superseding previous, in-depth all-sky data allows us to revisit the construction of X-ray cluster catalogs, extending the study to lower cluster masses and higher redshifts and providing modeling of the selection function. Methods. We performed a wavelet detection of X-ray sources and made extensive simulations of the detection of clusters in the RASS data. We assigned an optical richness to each of the 24 788 detected X-ray sources in the 10 382 square degrees of the Baryon Oscillation Spectroscopic Survey area using red sequence cluster finder redMaPPer version 5.2 run on Sloan Digital Sky Survey photometry. We named this survey COnstrain Dark Energy with X-ray (CODEX) clusters. Results. We show that there is no obvious separation of sources on galaxy clusters and active galactic nuclei (AGN) based on the distribution of systems on their richness. This is a combination of an increasing number of galaxy groups and their selection via the identification of X-ray sources either by chance or by groups hosting an AGN. To clean the sample, we use a cut on the optical richness at the level corresponding to the 10% completeness of the survey and include it in the modeling of the cluster selection function. We present the X-ray catalog extending to a redshift of 0.6. Conclusions. The CODEX suvey is the first large area X-ray selected catalog of northern clusters reaching fluxes of 10−13 ergs s−1 cm−2. We provide modeling of the sample selection and discuss the redshift evolution of the high end of the X-ray luminosity function (XLF). Our results on z <  0.3 XLF agree with previous studies, while we provide new constraints on the 0.3 <  z <  0.6 XLF. We find a lack of strong redshift evolution of the XLF, provide exact modeling of the effect of low number statistics and AGN contamination, and present the resulting constraints on the flat ΛCDM.


2019 ◽  
Vol 874 (2) ◽  
pp. 112 ◽  
Author(s):  
Alex Sheardown ◽  
Thomas M. Fish ◽  
Elke Roediger ◽  
Matthew Hunt ◽  
John ZuHone ◽  
...  

Author(s):  
K.B. Reuter ◽  
D.B. Williams ◽  
J.I. Goldstein

In the Fe-Ni system, although ordered FeNi and ordered Ni3Fe are experimentally well established, direct evidence for ordered Fe3Ni is unconvincing. Little experimental data for Fe3Ni exists because diffusion is sluggish at temperatures below 400°C and because alloys containing less than 29 wt% Ni undergo a martensitic transformation at room temperature. Fe-Ni phases in iron meteorites were examined in this study because iron meteorites have cooled at slow rates of about 10°C/106 years, allowing phase transformations below 400°C to occur. One low temperature transformation product, called clear taenite 2 (CT2), was of particular interest because it contains less than 30 wtZ Ni and is not martensitic. Because CT2 is only a few microns in size, the structure and Ni content were determined through electron diffraction and x-ray microanalysis. A Philips EM400T operated at 120 kV, equipped with a Tracor Northern 2000 multichannel analyzer, was used.


Author(s):  
Vinayak P. Dravid ◽  
V. Ravikumar ◽  
Richard Plass

With the advent of coherent electron sources with cold field emission guns (cFEGs), it has become possible to utilize the coherent interference phenomenon and perform “practical” electron holography. Historically, holography was envisioned to extent the resolution limit by compensating coherent aberrations. Indeed such work has been done with reasonable success in a few laboratories around the world. However, it is the ability of electron holography to map electrical and magnetic fields which has caught considerable attention of materials science community.There has been considerable theoretical work on formation of space charge on surfaces and internal interfaces. In particular, formation and nature of space charge have important implications for the performance of numerous electroceramics which derive their useful properties from electrically active grain boundaries. Bonnell and coworkers, in their elegant STM experiments provided the direct evidence for GB space charge and its sign, while Chiang et al. used the indirect but powerful technique of x-ray microchemical profiling across GBs to infer the nature of space charge.


2007 ◽  
Vol 472 (3) ◽  
pp. 739-748 ◽  
Author(s):  
M. Branchesi ◽  
I. M. Gioia ◽  
C. Fanti ◽  
R. Fanti
Keyword(s):  

2020 ◽  
Vol 15 (S359) ◽  
pp. 119-125
Author(s):  
W. Forman ◽  
C. Jones ◽  
A. Bogdan ◽  
R. Kraft ◽  
E. Churazov ◽  
...  

AbstractOptically luminous early type galaxies host X-ray luminous, hot atmospheres. These hot atmospheres, which we refer to as coronae, undergo the same cooling and feedback processes as are commonly found in their more massive cousins, the gas rich atmospheres of galaxy groups and galaxy clusters. In particular, the hot coronae around galaxies radiatively cool and show cavities in X-ray images that are filled with relativistic plasma originating from jets powered by supermassive black holes (SMBH) at the galaxy centers. We discuss the SMBH feedback using an X-ray survey of early type galaxies carried out using Chandra X-ray Observatory observations. Early type galaxies with coronae very commonly have weak X-ray active nuclei and have associated radio sources. Based on the enthalpy of observed cavities in the coronae, there is sufficient energy to “balance” the observed radiative cooling. There are a very few remarkable examples of optically faint galaxies that are 1) unusually X-ray luminous, 2) have large dark matter halo masses, and 3) have large SMBHs (e.g., NGC4342 and NGC4291). These properties suggest that, in some galaxies, star formation may have been truncated at early times, breaking the simple scaling relations.


2009 ◽  
Vol 697 (2) ◽  
pp. 1597-1620 ◽  
Author(s):  
Jason W. Henning ◽  
Brennan Gantner ◽  
Jack O. Burns ◽  
Eric J. Hallman

Sign in / Sign up

Export Citation Format

Share Document