scholarly journals 236 years ago. . .

2006 ◽  
Vol 2 (S236) ◽  
pp. xvii-xx ◽  
Author(s):  
Giovanni B. Valsecchi

AbstractSome of the problems related to Near Earth Objects (NEOs), like orbit determination and ephemeris computation, are not new, and had to be dealt with since the beginning of NEO astronomy. The latter practically started with the discovery of Comet D/1770 L1 Lexell, that passed very close to the Earth in 1770; studies of the chaotic dynamics of this exceptional object continued well into the XIXth century. At the end of the XXth century there has been a renewal of interest in NEOs, as attested by IAU Symposium 236.

Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Maddalena Mochi ◽  
Giacomo Tommei

The solar system is populated with, other than planets, a wide variety of minor bodies, the majority of which are represented by asteroids. Most of their orbits are comprised of those between Mars and Jupiter, thus forming a population named Main Belt. However, some asteroids can run on trajectories that come close to, or even intersect, the orbit of the Earth. These objects are known as Near Earth Asteroids (NEAs) or Near Earth Objects (NEOs) and may entail a risk of collision with our planet. Predicting the occurrence of such collisions as early as possible is the task of Impact Monitoring (IM). Dedicated algorithms are in charge of orbit determination and risk assessment for any detected NEO, but their efficiency is limited in cases in which the object has been observed for a short period of time, as is the case with newly discovered asteroids and, more worryingly, imminent impactors: objects due to hit the Earth, detected only a few days or hours in advance of impacts. This timespan might be too short to take any effective safety countermeasure. For this reason, a necessary improvement of current observation capabilities is underway through the construction of dedicated telescopes, e.g., the NEO Survey Telescope (NEOSTEL), also known as “Fly-Eye”. Thanks to these developments, the number of discovered NEOs and, consequently, imminent impactors detected per year, is expected to increase, thus requiring an improvement of the methods and algorithms used to handle such cases. In this paper we present two new tools, based on the Admissible Region (AR) concept, dedicated to the observers, aiming to facilitate the planning of follow-up observations of NEOs by rapidly assessing the possibility of them being imminent impactors and the remaining visibility time from any given station.


1997 ◽  
Vol 40 (5) ◽  
Author(s):  
A. Cook

The physics of the Earth and the planets itself limits the knowledge that can be obtained of it. Two principle limitations are set in inverse problems and by chaotic dynamics; examples of each are given in this essay and some implications are discussed.


Impact! ◽  
1996 ◽  
Author(s):  
Gerrit L. Verschuur

Finding asteroids and comets that may someday slam into our planet is the first step. What do we do then? This question is being given a whole lot of attention. In early 1993 NASA and the U.S. Congress received a report of the Near-Earth-Objects Interception Workshop (Spaceguard), the first step toward creating a program for pushing aside approaching asteroids. The report stated that “There is a clear need for continuing national and international scientific investigation and political leadership to establish a successful and broadly acceptable policy.” There are two or three options open to us to avoid being wiped out. The first is to step out of the way. This may not sound very practical, and it isn’t, at least not for a planet-load of people. However, if we plan ahead we could ship a few thousand human beings to other parts of the solar system so that if the earth were to be struck, they, at least, would survive. This would only be a privilege for a few, and getting back to earth after the cataclysm could be a rather large problem in itself. Who will welcome them back upon their return? Where would they land? If we could afford to set up colonies on the moon or Mars, the colonists could wait until after the dust had settled before attempting to return. The problem with this option is that, after a really healthy thwack, the earth’s environment would be so altered that returning human beings might find this to be an alien planet. The second way in which we could avoid getting hit would be to place an object between the onrushing comet or asteroid and ourselves. For such an emergency it might pay to place a few asteroids in geocentric orbit to be maneuvered when we need them. Then we could watch the spectacle as one asteroid slams into another, possibly showering the planet with small bits of debris that might do no more than create a spectacular display of fireballs—if we get it right, of course.


2020 ◽  
Vol 500 (1) ◽  
pp. 1151-1157
Author(s):  
Yukun Huang (黄宇坤) ◽  
Brett Gladman

ABSTRACT Previous work has demonstrated orbital stability for 100 Myr of initially near-circular and coplanar small bodies in a region termed the ‘Earth–Mars belt’ from 1.08 < a < 1.28 au. Via numerical integration of 3000 particles, we studied orbits from 1.04–1.30 au for the age of the Solar system. We show that on this time-scale, except for a few locations where mean-motion resonances with Earth affect stability, only a narrower ‘Earth–Mars belt’ covering a ∼ (1.09, 1.17) au, e < 0.04, and I < 1° has over half of the initial orbits survive for 4.5 Gyr. In addition to mean-motion resonances, we are able to see how the ν3, ν4, and ν6 secular resonances contribute to long-term instability in the outer (1.17–1.30 au) region on Gyr time-scales. We show that all of the (rather small) near-Earth objects (NEOs) in or close to the Earth–Mars belt appear to be consistent with recently arrived transient objects by comparing to a NEO steady-state model. Given the <200 m scale of these NEOs, we estimated the Yarkovsky drift rates in semimajor axis and use these to estimate that a diameter of ∼100 km or larger would allow primordial asteroids in the Earth–Mars belt to likely survive. We conclude that only a few 100-km sized asteroids could have been present in the belt’s region at the end of the terrestrial planet formation.


2011 ◽  
Vol 7 (S285) ◽  
pp. 352-354
Author(s):  
T. A. Lister

AbstractAn increasing number of sky surveys is already on-line or soon will be, leading to a large boost in the detection of Solar System objects of all types. For Near-Earth Objects (NEOs) that could potentially hit the Earth, timely follow-up is essential. I describe the development of an automated system which responds to new detections of NEOs from Pan-STARRS and automatically observes them with the LCOGT telescopes. I present results from the first few months of operation, and plans for the future with the 6-site, 40-telescope global LCOGT Network.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 103
Author(s):  
Giacomo Tommei

The Impact Monitoring (IM) of Near-Earth Objects (NEOs) is a young field of research, considering that 22 years ago precise algorithms to compute an impact probability with the Earth did not exist. On the other hand, the year 2020 just passed saw the increase of IM operational systems: in addition to the two historical systems, CLOMON2 (University of Pisa/SpaceDyS) and Sentry (JPL/NASA), the European Space Agency (ESA) started its own system AstOD. Moreover, in the last five years three systems for the detection of imminent impactors (small asteroidal objects detected a few days before the possible impact with the Earth) have been developed: SCOUT (at JPL/NASA), NEORANGER (at University of Helsinki) and NEOScan (at University of Pisa/SpaceDyS). The IM science, in addition to being useful for the planetary protection, is a very fascinating field of research because it involves astronomy, physics, mathematics and computer science. In this paper I am going to review the mathematical tools and algorithms of the IM science, highlighting the historical evolution and the challenges to be faced in the future.


2006 ◽  
Vol 2 (S236) ◽  
pp. 471-476
Author(s):  
Iwan P. Williams

AbstractFollowing the report of the ‘task force’, the UK Government decided to accept some of it's recommendations. In particular, it accepted two that recommended the setting up of a British National Centre for Near Earth Objects. The final outcome was the setting up of a Near Earth Object Information Centre to inform the general public of the dangers or otherwise from impact on the Earth of Near Earth Objects. The Centre has now been running for several years and in this publication we examine the current workings of the Centre and discuss some of its successes and failures.


The accurate determination of satellite orbits depends on an adequate accumulation of observations, a sound dynamical theory and a fairly sophisticated sequence of numerical computations. The particular patterns of observation, theory and computation are considered in relation to the objectives of orbit determination. Factors to be taken into account are the type, accuracy and spread of observations; perturbations of the orbit due to air drag, attraction of the Earth, Moon, and Sun, and solar radiation pressure; and the speed and cost of available computers. These factors, together with the overall objectives, determine the main features of the computation; whether to use special or general perturbation techniques, what length of orbit arc to use, what parameters to determine and how to present the results.


Sign in / Sign up

Export Citation Format

Share Document