scholarly journals The supercritical accretion disk in SS 433 and ultraluminous X-ray sources

2006 ◽  
Vol 2 (S238) ◽  
pp. 225-228
Author(s):  
S. N. Fabrika ◽  
P. K. Abolmasov ◽  
S. Karpov

AbstractSS 433 is the only known persistent supercritical accretor, it may be very important for understanding ultraluminous X-ray sources (ULXs) located in external galaxies. We describe main properties of the SS 433 supercritical accretion disk and jets. Basing on observational data of SS 433 and published 2D simulations of supercritical accretion disks we estimate parameters of the funnel in the disk/wind of SS 433. We argue that the UV radiation of the SS 433 disk (∼ 50000 K, ∼ 1040erg/s) is roughly isotropic, but X-ray radiation (∼ 107K, ∼ 1040erg/s) of the funnel is mildly anisotropic. A face-on SS 433 object has to be ultraluminous in X-rays (1040–41erg/s). Typical time-scales of the funnel flux variability are estimated. Shallow and very broad (0.1-0.3c) and blue-shifted absorption lines are expected in the funnel X-ray spectrum.

2010 ◽  
Vol 6 (S275) ◽  
pp. 280-284 ◽  
Author(s):  
Sergei Fabrika ◽  
Alexei Medvedev

AbstractThe observed X-ray luminosity of SS 433 is ~1036 erg/s, it is known that all the radiation is formed in the famous SS 433 jets. The bolometric luminosity of SS 433 is ~1040 erg/s, and originally the luminosity must be realized in X-rays. The original radiation is probably thermalized in the supercritical accretion disk wind, however the missing more than four orders of magnitude is surprising. We have analysed the XMM-Newton spectra of SS 433 using a model of adiabatically and radiatively cooling X-ray jets. The multi-temperature thermal jet model reproduces very well the strongest observed emission lines, but it can not reproduce the continuum radiation and some spectral features. We have found a notable contribution of ionized reflection to the spectrum in the energy range from ~3 to 12 keV. The reflected spectrum is an evidence of the supercritical disk funnel, where the illuminating radiation comes from deeper funnel regions, to be further reflected in the outer visible funnel walls (r ≥ 2 ⋅ 1011 cm). The illuminating spectrum is similar to that observed in ULXs, its luminosity has to be no less than ~1039 erg/s. A soft excess has been detected, that does not depend on the thermal jet model details. It may be represented as a BB with a temperature of Tbb ≈ 0.1 keV and luminosity of Lbb~3 ⋅ 1037 erg/s. The soft spectral component has about the same parameters as those found in ULXs.


2018 ◽  
Vol 44 (6) ◽  
pp. 390-410 ◽  
Author(s):  
P. S. Medvedev ◽  
I. I. Khabibullin ◽  
S.Yu. Sazonov ◽  
E. M. Churazov ◽  
S. S. Tsygankov

2001 ◽  
Vol 205 ◽  
pp. 268-269 ◽  
Author(s):  
S. Fabrika ◽  
A. Mescheryakov

The object SS433 is a well-known source of relativistic jets, which are formed in supercritical accretion disk. It is very probable that the disk has polar channels and their radiation is collimated (the photo-cones). A face-on SS433 object can appear as ultra-bright and highly variable X-ray source, Lx ˜ 1040 − 1042 erg/s. We discuss the properties of these hypothetical objects and their frequency expected in galaxies. We describe a search for such objects using the ROSAT All Sky Survey and RC3 catalog of galaxies. Among the total 418 positive correlations we find that 142 sources in S and Irr galaxies are unknown as AGNs. Nuclear sources among them still contain many AGNs. Non-nuclear (offset) sources are rather hard, their X-ray luminosities are 1039 − 1041 erg/s. Their observed frequency is about 4–5% per galaxy, that is in agreement with expected frequency of the face-on SS 433 stars. The only way to recognize such stars is their expected violent variability in X rays.


2015 ◽  
Vol 11 (7) ◽  
pp. 551-553 ◽  
Author(s):  
Sergei Fabrika ◽  
Yoshihiro Ueda ◽  
Alexander Vinokurov ◽  
Olga Sholukhova ◽  
Megumi Shidatsu

1997 ◽  
Vol 163 ◽  
pp. 475-480
Author(s):  
I. Idan ◽  
G. Shaviv

AbstractThe structure of an accretion disk illuminated by X-rays is investigated. For high values of X-ray heating no static disk solution was found, while for low values of heating a corona was formed above the disk. In the high X-ray illumination case the only possible wind solution is the supersonic solution meaning the evaporation of the disk. Only a very narrow range of X- ray heating and critical point height yield the proper wind solution that agrees with the disk solution. Finally, a self-consistent model of accretion disk and a wind is presented.


1997 ◽  
Vol 163 ◽  
pp. 311-320 ◽  
Author(s):  
Philip R. Maloney ◽  
Mitchell C. Begelman

AbstractA geometrically thin, optically thick, warped accretion disk with a central source of luminosity is subject to non-axisymmetric forces due to radiation pressure; the resulting torque acts to modify the warp. Initially planar accretion disks are unstable to warping driven by radiation torque, as shown in a local analysis by Pringle (1996) and a global analysis of the stable and unstable modes by Maloney, Begelman, & Pringle (1996). In general, the warp also precesses.We discuss the nature of this instability, and its possible implications for accretion disks in X-ray binaries and active galactic nuclei. Specifically, we argue that this effect provides a plausible explanation for the misalignment and precession of the accretion disks in X-ray binaries such as SS 433 and Her X–l; the same mechanism explains why the maser disk in NGC 4258 is warped.


2021 ◽  
Vol 922 (2) ◽  
pp. 91
Author(s):  
Yanli Qiu ◽  
Hua Feng

Abstract Most ultraluminous X-ray sources (ULXs) are argued to be powered by supercritical accretion onto compact objects. One of the key questions regarding these objects is whether or not the hard X-rays are geometrically beamed toward the symmetric axis. We propose testing the scenario using disk irradiation to see how much the outer accretion disk sees the central hard X-rays. We collect a sample of 11 bright ULXs with an identification of a unique optical counterpart, and model their optical fluxes considering two irradiating sources: soft X-rays from the photosphere of the optically thick wind driven by supercritical accretion, and if needed in addition, hard X-rays from the Comptonization component. Our results indicate that the soft X-ray irradiation can account for the optical emission in the majority of ULXs, and the fraction of hard X-rays reprocessed on the outer disk is constrained to be no more than ∼10−2 in general. Such an upper limit is well consistent with the irradiation fraction expected in the case of no beaming. Therefore, no stringent constraint on the beaming effect can be placed according to the current data quality.


2019 ◽  
Vol 628 ◽  
pp. A135 ◽  
Author(s):  
R. Arcodia ◽  
A. Merloni ◽  
K. Nandra ◽  
G. Ponti

The correlation observed between monochromatic X-ray and UV luminosities in radiatively-efficient active galactic nuclei (AGN) lacks a clear theoretical explanation despite being used for many applications. Such a correlation, with its small intrinsic scatter and its slope that is smaller than unity in log space, represents the compelling evidence that a mechanism regulating the energetic interaction between the accretion disk and the X-ray corona must be in place. This ensures that going from fainter to brighter sources the coronal emission increases less than the disk emission. We discuss here a self-consistently coupled disk-corona model that can identify this regulating mechanism in terms of modified viscosity prescriptions in the accretion disk. The model predicts a lower fraction of accretion power dissipated in the corona for higher accretion states. We then present a quantitative observational test of the model using a reference sample of broad-line AGN and modeling the disk-corona emission for each source in the LX − LUV plane. We used the slope, normalization, and scatter of the observed relation to constrain the parameters of the theoretical model. For non-spinning black holes and static coronae, we find that the accretion prescriptions that match the observed slope of the LX − LUV relation produce X-rays that are too weak with respect to the normalization of the observed relation. Instead, considering moderately-outflowing Comptonizing coronae and/or a more realistic high-spinning black hole population significantly relax the tension between the strength of the observed and modeled X-ray emission, while also predicting very low intrinsic scatter in the LX − LUV relation. In particular, this latter scenario traces a known selection effect of flux-limited samples that preferentially select high-spinning, hence brighter, sources.


1987 ◽  
Vol 93 ◽  
pp. 485-485
Author(s):  
H. Steinle ◽  
W. Pietsck

AbstractDuring the August 1983 outburst of the old nova GK Persei observations with EXOSAT showed for the first time a 351 second periodicity in X-rays.Our fast photometry (U(B)V with 25 sec time resolution) was made at the end of the outburst in the nights of September 29 , and October 1–3 , using the 2.2 meter telescope at Calar Alto (Spain).Optical variations up to 10% in U and 4% in V with periodicities in the range 350 to 360 seconds were found, lasting only for few cycles.A comparison with the extrapolated prediction of the X-ray maxima did not show a coincidence, but rather an anticoincidence in several cases. This supports a model of reprocessed X-rays at the inner edge of an accretion disk.


2019 ◽  
Vol 626 ◽  
pp. A115 ◽  
Author(s):  
G. Marcel ◽  
J. Ferreira ◽  
M. Clavel ◽  
P.-O. Petrucci ◽  
J. Malzac ◽  
...  

Context. Transient X-ray binaries (XrB) exhibit very different spectral shapes during their evolution. In luminosity-color diagrams, their behavior in X-rays forms q-shaped cycles that remain unexplained. In Paper I, we proposed a framework where the innermost regions of the accretion disk evolve as a response to variations imposed in the outer regions. These variations lead not only to modifications of the inner disk accretion rate ṁin, but also to the evolution of the transition radius rJ between two disk regions. The outermost region is a standard accretion disk (SAD), whereas the innermost region is a jet-emitting disk (JED) where all the disk angular momentum is carried away vertically by two self-confined jets. Aims. In the previous papers of this series, it has been shown that such a JED–SAD disk configuration could reproduce the typical spectral (radio and X-rays) properties of the five canonical XrB states. The aim of this paper is now to replicate all X-ray spectra and radio emission observed during the 2010–2011 outburst of the archetypal object GX 339-4. Methods. We used the two-temperature plasma code presented in two previous papers (Papers II and III) and designed an automatic ad hoc fitting procedure that for any given date calculates the required disk parameters (ṁin,rJ) that fit the observed X-ray spectrum best. We used X-ray data in the 3–40 keV (RXTE/PCA) spread over 438 days of the outburst, together with 35 radio observations at 9 GHz (ATCA) dispersed within the same cycle. Results. We obtain the time distributions of ṁin(t) and rJ(t) that uniquely reproduce the X-ray luminosity and the spectral shape of the whole cycle. In the classical self-absorbed jet synchrotron emission model, the JED–SAD configuration also reproduces the radio properties very satisfactorily, in particular, the switch-off and -on events and the radio-X-ray correlation. Although the model is simplistic and some parts of the evolution still need to be refined, this is to our knowledge the first time that an outburst cycle is reproduced with such a high level of detail. Conclusions. Within the JED–SAD framework, radio and X-rays are so intimately linked that radio emission can be used to constrain the underlying disk configuration, in particular, during faint hard states. If this result is confirmed using other outbursts from GX 339-4 or other X-ray binaries, then radio could be indeed used as another means to indirectly probe disk physics.


Sign in / Sign up

Export Citation Format

Share Document