scholarly journals XMM-Newton study of the spectral variability in NLS1 galaxies

2006 ◽  
Vol 2 (S238) ◽  
pp. 429-430
Author(s):  
G. Ponti ◽  
M. Cappi ◽  
B. Czerny ◽  
R. W. Goosmann ◽  
V. Karas

AbstractPreliminary results of the study of the X-ray spectral variability of 12 Narrow Line Seyfert 1 (NLS1) galaxies are presented. Rms spectra are calculated and compared for the whole sample to search for possible variations with black hole mass. A larger sample of AGN is under investigation.

2018 ◽  
Vol 866 (1) ◽  
pp. 69 ◽  
Author(s):  
Hai-Wu Pan ◽  
Weimin Yuan ◽  
Su Yao ◽  
S. Komossa ◽  
Chichuan Jin
Keyword(s):  
X Ray ◽  

1997 ◽  
Vol 159 ◽  
pp. 40-43 ◽  
Author(s):  
K. Hayashida

AbstractASCA observations of four narrow-line Seyfert 1 galaxies are presented. Among the four sources, two show X-ray spectra consisting of soft and hard components. Rapid X-ray variability is observed in all four sources. We estimate the central black-hole mass of these sources and find indications that the apparent luminosities exceed the Eddington limit under some assumptions.


Galaxies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 64
Author(s):  
Alok C. Gupta

We reviewed X-ray flux and spectral variability properties studied to date by various X-ray satellites for Mrk 421 and PKS 2155-304, which are TeV emitting blazars. Mrk 421 and PKS 2155-304 are the most X-ray luminous blazars in the northern and southern hemispheres, respectively. Blazars show flux and spectral variabilities in the complete electromagnetic spectrum on diverse timescales ranging from a few minutes to hours, days, weeks, months and even several years. The flux and spectral variability on different timescales can be used to constrain the size of the emitting region, estimate the super massive black hole mass, find the dominant emission mechanism in the close vicinity of the super massive black hole, search for quasi-periodic oscillations in time series data and several other physical parameters of blazars. Flux and spectral variability is also a dominant tool to explain jet as well as disk emission from blazars at different epochs of observations.


1998 ◽  
Vol 188 ◽  
pp. 388-389
Author(s):  
A. Kubota ◽  
K. Makishima ◽  
T. Dotani ◽  
H. Inoue ◽  
K. Mitsuda ◽  
...  

About 10 X-ray binaries in our Galaxy and LMC/SMC are considered to contain black hole candidates (BHCs). Among these objects, Cyg X-1 was identified as the first BHC, and it has led BHCs for more than 25 years(Oda 1977, Liang and Nolan 1984). It is a binary system composed of normal blue supergiant star and the X-ray emitting compact object. The orbital kinematics derived from optical observations indicates that the compact object is heavier than ~ 4.8 M⊙ (Herrero 1995), which well exceeds the upper limit mass for a neutron star(Kalogora 1996), where we assume the system consists of only two bodies. This has been the basis for BHC of Cyg X-1.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


Author(s):  
Timothy S Hamilton ◽  
Marco Berton ◽  
Sonia Antón ◽  
Lorenzo Busoni ◽  
Alessandro Caccianiga ◽  
...  

Abstract The γ-ray emitting galaxy SBS 0846 + 513 has been classified as a Narrow-Line Seyfert 1 (NLS1) from its spectroscopy, and on that basis would be thought likely to have a small central black hole hosted in a spiral galaxy. But very few of the γ-ray NLS1 have high-resolution imaging of their hosts, so it is unknown how the morphology expectation holds up for the γ-emitting class. We have observed this galaxy in the J-band with the Large Binocular Telescope’s LUCI1 camera and the ARGOS adaptive optics system. We estimate its black hole mass to lie between $4.2\times 10^7 \le \frac{\text{M}}{\text{M}_\odot } \le 9.7\times 10^7$, using the correlation with bulge luminosity, or $1.9\times 10^7 \le \frac{\text{M}}{\text{M}_\odot } \le 2.4\times 10^7$ using the correlation with Sérsic index. Our favoured estimate is 4.2 × 107M⊙, putting its mass at the high end of the NLS1 range in general but consistent with others that are γ-ray emitters. These estimates are independent of the Broad Line Region viewing geometry and avoid any underestimates due to looking down the jet axis. Its host shows evidence of a bulge + disc structure, from the isophote shape and residual structure in the nuclear-subtracted image. This supports the idea that γ-ray NLS1 may be spiral galaxies, like their non-jetted counterparts.


2018 ◽  
Vol 619 ◽  
pp. A95 ◽  
Author(s):  
E. Chiaraluce ◽  
F. Vagnetti ◽  
F. Tombesi ◽  
M. Paolillo

Context. The well established negative correlation between the αOX spectral slope and the optical/ultraviolet (UV) luminosity, a by-product of the relation between X-rays and optical/UV luminosity, is affected by relatively large dispersion. The main contributors to this dispersion can be variability in the X-ray/UV ratio and/or changes in fundamental physical parameters. Aims. We want to quantify the contribution from variability within single sources (intra-source dispersion) and that from variations of other quantities different from source to source (inter-source dispersion). Methods. We use archival data from the XMM-Newton Serendipitous Source Catalog (XMMSSC) and from the XMM-OM Serendipitous Ultraviolet Source Survey (XMMOM-SUSS3). We select a sub-sample in order to decrease the dispersion of the relation due to the presence of radio-loud and broad absorption line objects, and that due to absorptions in both X-ray and optical/UV bands. We use the structure function (SF) to estimate the contribution from variability to the dispersion. We analyse the dependence of the residuals of the relation on various physical parameters in order to characterise the inter-source dispersion. Results. We find a total dispersion of σ ∼ 0.12 and find that intrinsic variability contributes 56% of the variance of the αOX − LUV relation. If we select only sources with a larger number of observational epochs (≥3) the dispersion of the relation decreases by approximately 15%. We find weak but significant dependencies of the residuals of the relation on black-hole mass and on Eddington ratio, which are also confirmed by a multivariate regression analysis of αOX as a function of UV luminosity and black-hole mass and/or Eddington ratio. We find a weak positive correlation of both the αOX index and the residuals of the αOX − LUV relation with inclination indicators, such as the full width at half maximum (Hβ) and the equivalent width (EW)[OIII], suggesting a weak increase of X-ray/UV ratio with the viewing angle. This suggests the development of new viewing angle indicators possibly applicable at higher redshifts. Moreover, our results suggest the possibility of selecting a sample of objects, based on their viewing angle and/or black-hole mass and Eddington ratio, for which the αOX − LUV relation is as tight as possible, in light of the use of the optical/UV – X-ray luminosity relation to build a distance modulus (DM)-z plane and estimate cosmological parameters.


Sign in / Sign up

Export Citation Format

Share Document