scholarly journals Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation

2008 ◽  
Vol 4 (S255) ◽  
pp. 134-141
Author(s):  
Francesca Matteucci

AbstractChemical evolution models for dwarf metal poor galaxies, including dwarf irregulars and dwarf spheroidals will be presented. The main ingredients necessary to build detailed models of chemical evolution including stellar nucleosynthesis, supernova progenitors, stellar lifetimes and stellar feedback will be discussed. The stellar feedback will be analysed in connection with the development of galactic winds in dwarf galaxies and their effects on the predicted abundances and abundance ratios. Model results concerning α-elements (O, Mg, Si, Ca), Fe and s-and r-process elements will be discussed and compared with the most recent observational data for metal poor galaxies of the Local Group. We will show how the study of abundance ratios versus abundances can represent a very powerful tool to infer constraints on galaxy formation mechanisms. In this framework, we will discuss whether, on the basis of their chemical properties, the dwarf galaxies of the Local Group could have been the building blocks of the Milky Way.

2020 ◽  
Vol 494 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Yuta Tarumi ◽  
Naoki Yoshida ◽  
Shigeki Inoue

ABSTRACT We study the enrichment and mixing of r-process elements in ultrafaint dwarf galaxies (UFDs). We assume that r-process elements are produced by neutron-star mergers (NSMs), and examine multiple models with different natal kick velocities and explosion energies. To this end, we perform cosmological simulations of galaxy formation to follow mixing of the dispersed r-process elements driven by star formation and the associated stellar feedback in progenitors of UFDs. We show that the observed europium abundance in Reticulum II is reproduced by our inner explosion model where an NSM is triggered at the centre of the galaxy, whereas the relatively low abundance in Tucana III is reproduced if an NSM occurs near the virial radius of the progenitor galaxy. The latter case is realized only if the neutron-star binary has a large natal kick velocity and travels over a long distance of a kiloparsec before merger. In both the inner and outer explosion cases, it is necessary for the progenitor galaxy to sustain prolonged star formation over a few hundred million years after the NSM, so that the dispersed r-process elements are well mixed within the interstellar medium. Short-duration star formation results in inefficient mixing, and then a large variation is imprinted in the stellar europium abundances, which is inconsistent with the observations of Reticulum II and Tucana III.


2015 ◽  
Vol 11 (S319) ◽  
pp. 26-26
Author(s):  
Michaela Hirschmann ◽  
Gabriella De Lucia

AbstractOne major deficiency of state-of-the-art galaxy formation models consists in their inability of capturing the observed galaxy downsizing trend significantly over-estimating the number density of low-mass galaxies, in particular at high redshifts. Employing an enhanced galaxy formation model with a full chemical enrichment scheme (DeLucia et al., 2014), we present an improved model for stellar feedback (based on parametrizations from cosmological zoom simulations), in which strong gas outflows occur due to bursty star formation at high z, while star formation is mainly “quiescent” not causing any significant outflows anymore at low z. Due to the stronger gas outflows at high z, early star formation is strongly delayed towards later times. This helps to sufficiently detach the evolution of galaxy growth from the hiearchical dark matter assembly resulting in a fairly good agreement with the evolution of the observed stellar mass function (SMF, see Fig. 1). With our new feedback scheme, we can also successfully reproduce many other observational constraints, such as the metallicity content, the cold gas fractions or the quiescent galaxy fractions at both low and high redshifts. The resulting new-generation galaxy catalogues (Hirschmann et al., in prep) based on that model are expected to significantly contribute to the interpretation of current and up-coming large-scale surveys (HST, JWST, Euclid). This will, in turn, provide a rapid verification and refinement of our modeling.


2002 ◽  
Vol 207 ◽  
pp. 58-61
Author(s):  
Pauline Barmby

Globular cluster ages are more than just lower limits to the age of the universe; the distribution of ages constraints the timescales for galaxy formation and chemical evolution. Globular cluster populations with different metallicities have now been detected in many galaxies, and understanding how these populations formed requires knowing their relative ages. We examined the relative ages of the two M31 globular cluster populations using their color and luminosity distributions and found that the metal-rich clusters could be up to 50% younger than the metal-poor clusters. While a small delay in the formation of metal-rich clusters might be imposed by chemical enrichment timescales, a large age gap demands a more detailed explanation. I outline several possibilities and their promises and problems.


2019 ◽  
Vol 14 (S353) ◽  
pp. 71-74
Author(s):  
Kaley Brauer ◽  
Alexander P. Ji ◽  
Kohei Hattori ◽  
Sergio Escobar ◽  
Anna Frebel

AbstractThe Milky Way’s stellar halo preserves a fossil record of smaller dwarf galaxies that merged with the Milky Way throughout its formation history. Currently, though, we lack reliable ways to identify which halo stars originated in which dwarf galaxies or even which stars were definitively accreted. Selecting stars with specific chemical signatures may provide a way forward. We investigate this theoretically and observationally for stars with r-process nucleosynthesis signatures. Theoretically, we combine high-resolution cosmological simulations with an empirically-motivated treatment of r-process enhancement. We find that around half of highly r-process-enhanced metal-poor halo stars may have originated in early ultra-faint dwarf galaxies that merged into the Milky Way during its formation. Observationally, we use Gaia DR2 to compare the kinematics of highly r-process-enhanced halo stars with those of normal halo stars. R-process-enhanced stars have higher galactocentric velocities than normal halo stars, suggesting an accretion origin. If r-process-enhanced stars largely originated in accreted ultra-faint dwarf galaxies, halo stars we observe today could play a key role in understanding the smallest building blocks of the Milky Way via this novel approach of chemical tagging


2008 ◽  
Vol 4 (S254) ◽  
pp. 381-392 ◽  
Author(s):  
Nikos Prantzos

AbstractI discuss three different topics concerning the chemical evolution of the Milky Way (MW). 1) The metallicity distribution of the MW halo; it is shown that this distribution can be analytically derived in the framework of the hierarchical merging scenario for galaxy formation, assuming that the component sub-haloes had chemical properties similar to those of the progenitors of satellite galaxies of the MW. 2) The age-metallicity relationship (AMR) in the solar neighborhood; I argue for caution in deriving from data with important uncertainties (such as the age uncertainties in the Geneva-Copenhagen Survey) a relationship between average metallicity and age: derived relationships are shown to be systematically flatter than the true ones and should not be directly compared to models. 3) The radial mixing of stars in the disk, which may have important effects on various observables (scatter in AMR, extension of the tails of the metallicity distribution, flatenning of disk abundance profiles). Recent SPH + N-body simulations find considerable radial mixing, but only comparison to observations will ultimately determine the extent of that mixing.


2011 ◽  
Vol 7 (S281) ◽  
pp. 251-252
Author(s):  
Takuji Tsujimoto

AbstractThe Galaxy is composed of four distinct structures, i.e., halo, bulge, and thick and thin disks, that are formed and evolved on different timescales; thus accordingly the speeds of chemical enrichment are different from one another, which is imprinted in individual stellar abundances. To decipher them, precise knowledge of the timing of the release of nucleosynthesis materials from various production sites is critical. The delay time distribution (DTD) of Type Ia supernovae (SNe Ia), recently revealed by the SNe Ia surveys of external galaxies, is incorporated into the models of chemical evolution for each structure. Here we report that the observed chemical properties for the thin and thick disks are compatible with a new SNe Ia DTD, and suggests a close chemical connection between the two in the way that the thin disk is formed from gas left after thick disk formation. This nicely explains the lack of thin disk stars with [Fe/H] ≲ −0.8. In this new context, a top-heavy IMF for the bulge is firmly confirmed. Finally we discuss the possibility of some modification of the DTD that might be considered for the halo case.


2020 ◽  
Vol 494 (1) ◽  
pp. 1002-1017 ◽  
Author(s):  
L Y Aaron Yung ◽  
Rachel S Somerville ◽  
Gergö Popping ◽  
Steven L Finkelstein

ABSTRACT The James Webb Space Telescope is expected to enable transformational progress in studying galaxy populations in the very early Universe, during the epoch of reionization. A critical parameter for understanding the sources that reionized the Universe is the Lyman-continuum production efficiency, ξion, defined as the rate of production of ionizing photons divided by the intrinsic UV luminosity. In this work, we combine self-consistent star formation and chemical enrichment histories predicted by semi-analytic models of galaxy formation with stellar population synthesis (SPS) models to predict the expected dependence of ξion on galaxy properties and cosmic epoch from z = 4–10. We then explore the sensitivity of the production rate of ionizing photons, $\dot{N}_\text{ion}$, to the choice of SPS model and the treatment of stellar feedback in our galaxy formation model. We compare our results to those of other simulations, constraints from empirical models, and observations. We find that adopting SPS models that include binary stars predict about a factor of 2 more ionizing radiation than models that only assume single stellar populations. We find that UV-faint, low-mass galaxies have values of ξion about 0.25 dex higher than those of more massive galaxies, but find weak evolution with cosmic time, about 0.2 dex from z ∼ 12–4 at fixed rest-UV luminosity. We provide predictions of $\dot{N}_\text{ion}$ as a function of Mh and a number of other galaxy properties. All results presented in this work are available at https://www.simonsfoundation.org/semi-analytic-forecasts-for-jwst/.


2009 ◽  
Vol 5 (S262) ◽  
pp. 240-243
Author(s):  
Nelson Padilla ◽  
Claudia Lagos ◽  
Sofía Cora

AbstractA semi-analytic model of galaxy formation with and without active galactic nuclei feedback is used to study the nature of possible building blocks (BBs) of z = 0 galaxies, including those of Milky-Way types. We find that BBs can show an important range of properties arising from environmental variables such as host halo mass, and whether a galaxy is a satellite within its host halo; the stellar formation histories are comparatively faster and the chemical enrichment is more efficient in BBs than in surviving satellites, in accordance with recent metallicity measurements for the Milky Way. These results can be used in combination with observational constraints to continue probing the ability of the cold dark-matter scenario to reproduce the history of galaxy demography in the Universe.


Sign in / Sign up

Export Citation Format

Share Document