scholarly journals The influence of star clusters on galactic disks: new insights in star-formation in galaxies

2008 ◽  
Vol 4 (S254) ◽  
pp. 209-220
Author(s):  
Pavel Kroupa

AbstractStars form in embedded star clusters which play a key role in determining the properties of a galaxy's stellar population. A large fraction of newly born massive stars are shot out from dynamically unstable embedded-cluster cores spreading them to large distances before they explode. Embedded clusters blow out their gas once the feedback energy from the new stellar population overcomes its binding energy, leading to cluster expansion and in many cases dissolution into the galaxy. Galactic disks may be thickened by such processes, and some thick disks may be the result of an early epoch of vigorous star-formation. Binary stellar systems are disrupted in clusters leading to a lower fraction of binaries in the field, while long-lived clusters harden degenerate-stellar binaries such that the SNIa rate may increase by orders of magnitude in those galaxies that were able to form long-lived clusters. The stellar initial mass function of the whole galaxy must be computed by adding the IMFs in the individual clusters. The resulting integrated galactic initial mass function (IGIMF) is top-light for SFRs < 10 M⊙/yr, and its slope and, more importantly, its upper stellar mass limit depend on the star-formation rate (SFR), explaining naturally the mass–metallicity relation of galaxies. Based on the IGIMF theory, the re-calibrated Hα-luminosity–SFR relation implies dwarf irregular galaxies to have the same gas-depletion time-scale as major disk galaxies, implying a major change of our concept of dwarf-galaxy evolution. A galaxy transforms about 0.3 per cent of its neutral gas mass every 10 Myr into stars. The IGIMF-theory also naturally leads to the observed radial Hα cutoff in disk galaxies without a radial star-formation cutoff. It emerges that the thorough understanding of the physics and distribution of star clusters may be leading to a major paradigm shift in our understanding of galaxy evolution.

1986 ◽  
Vol 7 ◽  
pp. 489-499
Author(s):  
Hans Zinnecker

AbstractThis review discusses both the earlier and the most recent work on the IMF in young star clusters. It is argued that the study of the stellar content of young star clusters offers the best chance of developing a theory of star formation and of the IMF.


2014 ◽  
Vol 2014 ◽  
pp. 1-30 ◽  
Author(s):  
Simone Recchi

In this review I give a summary of the state of the art for what concerns the chemo-dynamical numerical modelling of galaxies in general and of dwarf galaxies in particular. In particular, I focus my attention on (i) initial conditions, (ii) the equations to solve; (iii) the star formation process in galaxies, (iv) the initial mass function, (v) the chemical feedback, (vi) the mechanical feedback, (vii) the environmental effects. Moreover, some key results concerning the development of galactic winds in galaxies and the fate of heavy elements, freshly synthesised after an episode of star formation, have been reported. At the end of this review, I summarise the topics and physical processes, relevant to the evolution of galaxies, that in my opinion are not properly treated in modern computer simulations of galaxies and that deserve more attention in the future.


2009 ◽  
Vol 5 (S262) ◽  
pp. 368-369
Author(s):  
M. B. N. Kouwenhoven ◽  
S. P. Goodwin

AbstractObtaining accurate measurements of the initial mass function (IMF) is often considered to be the key to understanding star formation, and a universal IMF is often assumed to imply a universal star formation process. Here, we illustrate that different modes of star formation can result in the same IMF, and that, in order to truly understand star formation, a deeper understanding of the primordial binary population is necessary. Detailed knowledge on the binary fraction, mass ratio distribution, and other binary parameters, as a function of mass, is a requirement for recovering the star formation process from stellar population measurements.


2020 ◽  
Vol 633 ◽  
pp. A164
Author(s):  
Leah M. Fulmer ◽  
John S. Gallagher ◽  
Wolf-Rainer Hamann ◽  
Lida M. Oskinova ◽  
Varsha Ramachandran

Context. The supergiant ionized shell SMC-SGS 1 (DEM 167), which is located in the outer Wing of the Small Magellanic Cloud (SMC), resembles structures that originate from an energetic star-formation event and later stimulate star formation as they expand into the ambient medium. However, stellar populations within and surrounding SMC-SGS 1 tell a different story. Aims. We present a photometric study of the stellar population encompassed by SMC-SGS 1 in order to trace the history of such a large structure and its potential influence on star formation within the low-density, low-metallicity environment of the SMC. Methods. For a stellar population that is physically associated with SMC-SGS 1, we combined near-ultraviolet (NUV) photometry from the Galaxy Evolution Explorer with archival optical (V-band) photometry from the ESO Danish 1.54 m Telescope. Given their colors and luminosities, we estimated stellar ages and masses by matching observed photometry to theoretical stellar isochrone models. Results. We find that the investigated region supports an active, extended star-formation event spanning ∼25−40 Myr ago, as well as continued star formation into the present. Using a standard initial mass function, we infer a lower bound on the stellar mass from this period of ∼3 × 104 M⊙, corresponding to a star-formation intensity of ∼6 × 10−3 M⊙ kpc−2 yr−1. Conclusions. The spatial and temporal distributions of young stars encompassed by SMC-SGS 1 imply a slow, consistent progression of star formation over millions of years. Ongoing star formation, both along the edge and interior to SMC-SGS 1, suggests a combined stimulated and stochastic mode of star formation within the SMC Wing. We note that a slow expansion of the shell within this low-density environment may preserve molecular clouds within the volume of the shell, leaving them to form stars even after nearby stellar feedback expels local gas and dust.


2019 ◽  
Vol 489 (2) ◽  
pp. 1880-1898 ◽  
Author(s):  
Chong-Chong He ◽  
Massimo Ricotti ◽  
Sam Geen

ABSTRACT We present radiation-magneto-hydrodynamic simulations of star formation in self-gravitating, turbulent molecular clouds, modelling the formation of individual massive stars, including their UV radiation feedback. The set of simulations have cloud masses between mgas = 103 M⊙ and 3 × 105 M⊙ and gas densities typical of clouds in the local Universe ($\overline{n}_{\rm gas} \sim 1.8\times 10^2$ cm−3) and 10× and 100× denser, expected to exist in high-redshift galaxies. The main results are as follows. (i) The observed Salpeter power-law slope and normalization of the stellar initial mass function at the high-mass end can be reproduced if we assume that each star-forming gas clump (sink particle) fragments into stars producing on average a maximum stellar mass about $40{{\ \rm per\ cent}}$ of the mass of the sink particle, while the remaining $60{{\ \rm per\ cent}}$ is distributed into smaller mass stars. Assuming that the sinks fragment according to a power-law mass function flatter than Salpeter, with log-slope 0.8, satisfy this empirical prescription. (ii) The star formation law that best describes our set of simulation is ${\rm d}\rho _*/{\rm d}t \propto \rho _{\rm gas}^{1.5}$ if $\overline{n}_{\rm gas}\lt n_{\rm cri}\approx 10^3$ cm−3, and ${\rm d}\rho _*/{\rm d}t \propto \rho _{\rm gas}^{2.5}$ otherwise. The duration of the star formation episode is roughly six cloud’s sound crossing times (with cs = 10 km s−1). (iii) The total star formation efficiency in the cloud is $f_*=2{{\ \rm per\ cent}} (m_{\rm gas}/10^4~\mathrm{M}_\odot)^{0.4}(1+\overline{n}_{\rm gas}/n_{\rm cri})^{0.91}$, for gas at solar metallicity, while for metallicity Z &lt; 0.1 Z⊙, based on our limited sample, f* is reduced by a factor of ∼5. (iv) The most compact and massive clouds appear to form globular cluster progenitors, in the sense that star clusters remain gravitationally bound after the gas has been expelled.


1998 ◽  
Vol 508 (1) ◽  
pp. 347-369 ◽  
Author(s):  
K. L. Luhman ◽  
G. H. Rieke ◽  
C. J. Lada ◽  
E. A. Lada

Sign in / Sign up

Export Citation Format

Share Document