scholarly journals Testing massive star evolution, star-formation history, and feedback at low metallicity

2020 ◽  
Vol 633 ◽  
pp. A164
Author(s):  
Leah M. Fulmer ◽  
John S. Gallagher ◽  
Wolf-Rainer Hamann ◽  
Lida M. Oskinova ◽  
Varsha Ramachandran

Context. The supergiant ionized shell SMC-SGS 1 (DEM 167), which is located in the outer Wing of the Small Magellanic Cloud (SMC), resembles structures that originate from an energetic star-formation event and later stimulate star formation as they expand into the ambient medium. However, stellar populations within and surrounding SMC-SGS 1 tell a different story. Aims. We present a photometric study of the stellar population encompassed by SMC-SGS 1 in order to trace the history of such a large structure and its potential influence on star formation within the low-density, low-metallicity environment of the SMC. Methods. For a stellar population that is physically associated with SMC-SGS 1, we combined near-ultraviolet (NUV) photometry from the Galaxy Evolution Explorer with archival optical (V-band) photometry from the ESO Danish 1.54 m Telescope. Given their colors and luminosities, we estimated stellar ages and masses by matching observed photometry to theoretical stellar isochrone models. Results. We find that the investigated region supports an active, extended star-formation event spanning ∼25−40 Myr ago, as well as continued star formation into the present. Using a standard initial mass function, we infer a lower bound on the stellar mass from this period of ∼3 × 104 M⊙, corresponding to a star-formation intensity of ∼6 × 10−3 M⊙ kpc−2 yr−1. Conclusions. The spatial and temporal distributions of young stars encompassed by SMC-SGS 1 imply a slow, consistent progression of star formation over millions of years. Ongoing star formation, both along the edge and interior to SMC-SGS 1, suggests a combined stimulated and stochastic mode of star formation within the SMC Wing. We note that a slow expansion of the shell within this low-density environment may preserve molecular clouds within the volume of the shell, leaving them to form stars even after nearby stellar feedback expels local gas and dust.

2008 ◽  
Vol 4 (S254) ◽  
pp. 209-220
Author(s):  
Pavel Kroupa

AbstractStars form in embedded star clusters which play a key role in determining the properties of a galaxy's stellar population. A large fraction of newly born massive stars are shot out from dynamically unstable embedded-cluster cores spreading them to large distances before they explode. Embedded clusters blow out their gas once the feedback energy from the new stellar population overcomes its binding energy, leading to cluster expansion and in many cases dissolution into the galaxy. Galactic disks may be thickened by such processes, and some thick disks may be the result of an early epoch of vigorous star-formation. Binary stellar systems are disrupted in clusters leading to a lower fraction of binaries in the field, while long-lived clusters harden degenerate-stellar binaries such that the SNIa rate may increase by orders of magnitude in those galaxies that were able to form long-lived clusters. The stellar initial mass function of the whole galaxy must be computed by adding the IMFs in the individual clusters. The resulting integrated galactic initial mass function (IGIMF) is top-light for SFRs < 10 M⊙/yr, and its slope and, more importantly, its upper stellar mass limit depend on the star-formation rate (SFR), explaining naturally the mass–metallicity relation of galaxies. Based on the IGIMF theory, the re-calibrated Hα-luminosity–SFR relation implies dwarf irregular galaxies to have the same gas-depletion time-scale as major disk galaxies, implying a major change of our concept of dwarf-galaxy evolution. A galaxy transforms about 0.3 per cent of its neutral gas mass every 10 Myr into stars. The IGIMF-theory also naturally leads to the observed radial Hα cutoff in disk galaxies without a radial star-formation cutoff. It emerges that the thorough understanding of the physics and distribution of star clusters may be leading to a major paradigm shift in our understanding of galaxy evolution.


2019 ◽  
Vol 15 (S359) ◽  
pp. 386-390
Author(s):  
Lucimara P. Martins

AbstractWith the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.


2008 ◽  
Vol 4 (S256) ◽  
pp. 191-202
Author(s):  
J. M. Oliveira

AbstractThe Magellanic Clouds offer unique opportunities to study star formation both on the global scales of an interacting system of gas-rich galaxies, as well as on the scales of individual star-forming clouds. The interstellar media of the Small and Large Magellanic Clouds and their connecting bridge, span a range in (low) metallicities and gas density. This allows us to study star formation near the critical density and gain an understanding of how tidal dwarfs might form; the low metallicity of the SMC in particular is typical of galaxies during the early phases of their assembly, and studies of star formation in the SMC provide a stepping stone to understand star formation at high redshift where these processes can not be directly observed. In this review, I introduce the different environments encountered in the Magellanic System and compare these with the Schmidt-Kennicutt law and the predicted efficiencies of various chemo-physical processes. I then concentrate on three aspects that are of particular importance: the chemistry of the embedded stages of star formation, the Initial Mass Function, and feedback effects from massive stars and its ability to trigger further star formation.


1999 ◽  
Vol 190 ◽  
pp. 343-344 ◽  
Author(s):  
T. A. Smecker-Hane ◽  
J. S. Gallagher ◽  
Andrew Cole ◽  
P. B. Stetson ◽  
E. Tolstoy

The Large Magellanic Cloud (LMC) is unique among galaxies in the Local Group in that it is the most massive non-spiral, is relatively gas-rich, and is actively forming stars. Determining its star-formation rate (SFR) as a function of time will be a cornerstone in our understanding of galaxy evolution. The best method of deriving a galaxy's past SFR is to compare the densities of stars in a color-magnitude diagram (CMD), a Hess diagram, with model Hess diagrams. The LMC has a complex stellar population with ages ranging from 0 to ~ 14 Gyr and metallicities from −2 ≲ [Fe/H] ≲ −0.4, and deriving its SFR and simultaneously constraining model input parameters (distance, age-metallicity relation, reddening, and stellar models) requires well-populated CMDs that span the magnitude range 15 ≤ V ≤ 24. Although existing CMDs of field stars in the LMC show tantalizing evidence for a significant burst of star formation that occurred ~ 3 Gyr ago (for examples, see Westerlund et al. 1995; Vallenari et al. 1996; Elson, et al. 1997; Gallagher et al. 1999, and references therein), estimates of the enhancement in the SFR vary from factors of 3 to 50. This uncertainty is caused by the relatively large photometric errors that plague crowded ground-based images, and the small number statistics that plague CMDs created from single Wide Field Planetary Camera 2 (WFPC2) images.


2018 ◽  
Vol 14 (S344) ◽  
pp. 186-189
Author(s):  
P. Steyrleithner ◽  
G. Hensler ◽  
S. Recchi ◽  
S. Ploeckinger

AbstractIn recent years dedicated observations have uncovered star formation at extremely low rates in dwarf galaxies, tidal tails, ram-pressure stripped gas clouds, and the outskirts of galactic disks. At the same time, numerical simulations of galaxy evolution have advanced to higher spatial and mass resolutions, but have yet to account for the underfilling of the uppermost mass bins of stellar initial mass function (IMF) at low star-formation rates. In such situations, simulations may simply scale down the IMF, without realizing that this unrealistically results in fractions of massive stars, along with fractions of massive star feedback energy (e.g., radiation and SNII explosions). Not properly accounting for such parameters has consequences for the self-regulation of star formation, the energetics of galaxies, as well as for the evolution of chemical abundances. Here we present numerical simulations of dwarf galaxies with low star-formation rates allowing for two extreme cases of the IMF: a “filled” case with fractional massive stars vs. a truncated IMF, at which the IMF is built bottom-up until the gas reservoir allows the formation of a last single star at an uppermost mass. The aim of the study is to demonstrate the different effects on galaxy evolution with respect to self-regulation, feedback, and chemistry. The case of a stochastic sampled IMF is situated somewhere in between these extremes.


2009 ◽  
Vol 5 (S262) ◽  
pp. 353-354
Author(s):  
Enrico V. Held ◽  
Eline Tolstoy ◽  
Luca Rizzi ◽  
Mary Cesetti ◽  
Andrew A. Cole ◽  
...  

AbstractWe present the first results of a comprehensive HST study of the star-formation history of Fornax dSph, based on WFPC2 imaging of 7 Fornax fields. Our observations reach the oldest main-sequence turnoffs, allowing us to address fundamental questions of dwarf galaxy evolution, such as the spatial variations in the stellar content, and whether the old stellar population is made up of stars formed in a very early burst or the result of a more continuous star formation.


2012 ◽  
Vol 8 (S292) ◽  
pp. 254-254
Author(s):  
Pieter Westera ◽  
François Cuisinier ◽  
Didier Curty ◽  
Roland Buser

AbstractDwarf irregular galaxies are usually low-metallicity objects, and show ongoing or very recent star formation, giving rise to their irregular appearance. Especially HII galaxies, a sub-category of dwarf irregulars showing unusually high star formation activity, are believed to be among the least evolved galaxies in existence today. Therefore, they are very interesting objects for studies of early galaxy evolution and of metallicity enrichment mechanisms.Several groups have developed theoretical evolutionary models of galaxies of this type, describing different possible formation and evolutionary scenarii, and varying factors such as gas infall and outflow, as well as the star formation history, and making predictions about their chemical evolution. One way to evaluate these models is by determining the metallicities of the different components of these galaxies, their gas and stars.We examine a sample of HII galaxies from the Sloan Digital Sky Survey, which possibly contains the largest homogeneous sample of HII galaxy spectra to date. Using very restrictive selection criteria, which guarantee a sample of high quality spectra and avoid “contamination” by spectra of objects of other nature, we defined a sample of ∼ 700 HII galaxies spectra.Through emission line strength calibrations and a detailed stellar population synthesis, we determined the metallicities of both the gas and the stellar content of these galaxies.For HII galaxies up to stellar masses of 5 × 109M⊙, we find enrichment mechanisms not to vary with galactic mass, being the same for low- and high-mass galaxies on average. They do seem to present a greater variety at the high-mass end, though, indicating a more complex assembly history. Our results favour galaxy evolutionary models featuring constantly infalling low-metallicity clouds that retain part of the galactic winds. Above 5 × 109M⊙ stellar mass, the retention of high metallicity gas by the galaxies' gravitational potential dominates.I would like to thank the Fundação de Amparo à Pesquisa do Estado do São Paulo (FAPESP) for financial support.


2019 ◽  
Vol 632 ◽  
pp. A110 ◽  
Author(s):  
Zhiqiang Yan ◽  
Tereza Jerabkova ◽  
Pavel Kroupa

The alpha element to iron peak element ratio, for example [Mg/Fe], is a commonly applied indicator of the galaxy star formation timescale (SFT) since the two groups of elements are mainly produced by different types of supernovae that explode over different timescales. However, it is insufficient to consider only [Mg/Fe] when estimating the SFT. The [Mg/Fe] yield of a stellar population depends on its metallicity. Therefore, it is possible for galaxies with different SFTs and at the same time different total metallicity to have the same [Mg/Fe]. This effect has not been properly taken into consideration in previous studies. In this study, we assume the galaxy-wide stellar initial mass function (gwIMF) to be canonical and invariant. We demonstrate that our computation code reproduces the SFT estimations of previous studies, where only the [Mg/Fe] observational constraint is applied. We then demonstrate that once both metallicity and [Mg/Fe] observations are considered, a more severe “downsizing relation” is required. This means that either low-mass ellipticals have longer SFTs (> 4 Gyr for galaxies with mass below 1010 M⊙) or massive ellipticals have shorter SFTs (≈200 Myr for galaxies more massive than 1011 M⊙) than previously thought. This modification increases the difficulty in reconciling such SFTs with other observational constraints. We show that applying different stellar yield modifications does not relieve this formation timescale problem. The quite unrealistically short SFT required by [Mg/Fe] and total metallicity would be prolonged if a variable stellar gwIMF were assumed. Since a systematically varying gwIMF has been suggested by various observations this could present a natural solution to this problem.


1995 ◽  
Vol 164 ◽  
pp. 175-180
Author(s):  
Abhijit Saha

The aim of the study of the populations in a stellar system is to understand and be able to describe the stellar content of a system in terms of physical parameters such as the age, star formation history, chemical enrichment history, initial mass function (IMF), environment, and dynamical history of the system. This is done given an understanding of stellar evolution and the ability to express the outcome in “observer parameters”, particularly a color-magnitude diagram (CMD), kinematics, and metallicity. From this perspective, the simplest systems are the galactic clusters and the globular clusters, where all the component stars are coeval and of the same metallicity. The current state of knowledge for these are discussed by others in this conference. We proceed to the next level of complexity (where metallicities are not necessarily all the same, and nor are the stars all coeval), and try to decompose their stellar content, particularly in terms of star formation rate and metallicity. In this regard the two classes of objects that come to mind are the dwarf spheroidals, and the dwarf irregulars. Both these classes of objects are more massive than the open clusters and globular clusters, and show evidence of complexities in their star formation histories, without being so convolved as to make such a study intractable. As we shall see, recent studies along these lines have presented some puzzling problems. Moreover, these are the smallest independent galaxies, and the study of star formation in these is likely to shed light on the history and formation of larger and more complex galaxies.


2015 ◽  
Vol 12 (S316) ◽  
pp. 77-83
Author(s):  
Michele Cignoni ◽  

AbstractI will present new results on the star formation history of 30 Doradus in the Large Magellanic Cloud based on the panchromatic imaging survey Hubble Tarantula Treasury Project (HTTP). Here the focus is on the starburst cluster NGC2070. The star formation history is derived by comparing the deepest ever optical and NIR color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PARSEC models, which include all stellar phases from pre-main sequence to post-main sequence. For the first time in this region we are able to measure the star formation using intermediate and low mass stars simultaneously. Our results suggest that NGC2070 experienced a prolonged activity. I will discuss the detailed star formation history, initial mass function and reddening distribution.


Sign in / Sign up

Export Citation Format

Share Document