scholarly journals The heliospheric magnetic field and the solar wind during the solar cycle

2008 ◽  
Vol 4 (S257) ◽  
pp. 109-120 ◽  
Author(s):  
Lennard A. Fisk ◽  
Liang Zhao

AbstractThe heliospheric magnetic field and the solar wind are behaving differently in the current solar minimum, compared to the previous minimum. The radial component of the heliospheric magnetic field, and thus the average value of the component of the solar magnetic field that opens into the heliosphere, the so-called open magnetic flux of the Sun, is lower than it was in the previous solar minimum; in fact, lower than in any previous solar minimum for which there are good spacecraft observations. The mass flux, the ram pressure, and the coronal electron temperature as measured by solar wind charge states are also lower in the current minimum compared to the previous one. This situation provides an opportunity to test some of the concepts for the behavior of the heliospheric magnetic field and the solar wind that have been developed; to improve these theories, and to construct a theory for the solar wind that accounts for the observed behavior throughout the solar cycle, including the current unusual solar minimum.

Solar Physics ◽  
2019 ◽  
Vol 294 (10) ◽  
Author(s):  
R. Modzelewska ◽  
K. Iskra ◽  
W. Wozniak ◽  
M. Siluszyk ◽  
M. V. Alania

Abstract We study the role of the drift effect in the temporal changes of the anisotropy of galactic cosmic rays (GCRs) and the influence of the sector structure of the heliospheric magnetic field on it. We analyze the GCR anisotropy in Solar Cycle 24 and solar minimum 23/24 with negative polarity ($qA<0$qA<0) for the period of 2007 – 2009 and near minimum 24/25 with positive polarity ($qA>0$qA>0) in 2017 – 2018 using data of the global network of Neutron Monitors. We use the harmonic analysis method to calculate the radial and tangential components of the anisotropy of GCRs for different sectors (‘+’ corresponds to the positive and ‘−’ to the negative directions) of the heliospheric magnetic field. We compare the analysis of GCR anisotropy using different evaluations of the mean GCRs rigidity related to Neutron Monitor observations. Then the radial and tangential components are used for characterizing the GCR modulation in the heliosphere. We show that in the solar minimum 23/24 in 2007 – 2009 when $qA<0$qA<0, the drift effect is not visibly evident in the changes of the radial component, i.e. the drift effect is found to produce $\approx 4$≈4% change in the radial component of the GCR anisotropy for 2007 – 2009. Hence the diffusion dominated model of GCR transport is more acceptable in 2007 – 2009. In turn, near the solar minimum 24/25 in 2017 – 2018 when $qA>0$qA>0, the drift effect is evidently visible and produces ≈40% change in the radial component of the GCR anisotropy for 2017 – 2018. So in the period of 2017 – 2018 a diffusion model with noticeably manifested drift is acceptable. The results of this work are in good agreement with the drift theory of GCR modulation, according to which, during negative (positive) polarity cycles, a drift stream of GCRs is directed toward (away from) the Sun, thus giving rise to a 22-year cycle variation of the radial GCR anisotropy.


2011 ◽  
Vol 7 (S286) ◽  
pp. 200-209 ◽  
Author(s):  
E. Echer ◽  
B. T. Tsurutani ◽  
W. D. Gonzalez

AbstractThe recent solar minimum (2008-2009) was extreme in several aspects: the sunspot number, Rz, interplanetary magnetic field (IMF) magnitude Bo and solar wind speed Vsw were the lowest during the space era. Furthermore, the variance of the IMF southward Bz component was low. As a consequence of these exceedingly low solar wind parameters, there was a minimum in the energy transfer from solar wind to the magnetosphere, and the geomagnetic activity ap index reached extremely low levels. The minimum in geomagnetic activity was delayed in relation to sunspot cycle minimum. We compare the solar wind and geomagnetic activity observed in this recent minimum with previous solar cycle values during the space era (1964-2010). Moreover, the geomagnetic activity conditions during the current minimum are compared with long term variability during the period of available geomagnetic observations. The extremely low geomagnetic activity observed in this solar minimum was previously recorded only at the end of XIX century and at the beginning of the XX century, and this might be related to the Gleissberg (80-100 years) solar cycle.


2001 ◽  
Vol 203 ◽  
pp. 585-594 ◽  
Author(s):  
T. H. Zurbuchen

The heliospheric magnetic field configuration is largely determined in the solar atmosphere. The interplanetary magnetic field is therefore intimately linked with the coronal structure and evolution during the solar cycle. We summarize recent experimental results from active satellite experiments on Ulysses and the Advanced Composition Explorer (ACE). These results provide constraints on the sources of the solar wind and also the magnetic structure of the heliosphere and the corona. These results suggest the relevance of reconnection processes and differential rotation effects close to the Sun. This leads to large perturbations from a standard Archimedean spiral configuration which cannot be successfully modeled using coronal models which assume a potential magnetic field.


2021 ◽  
Author(s):  
Huw Morgan

&lt;p&gt;To date, the inner boundary conditions for solar wind models are either directly or indirectly based on magnetic field extrapolation models of the photosphere. Furthermore, between the photosphere and Earth, there are no other direct empirical constraints on models. New breakthroughs in coronal rotation tomography, applied to coronagraph observations, allow maps of the coronal electron density to be made in the heliocentric height range 4-12 solar radii (Rs). We show that these maps (i) give a new empirical boundary condition for solar wind structure at a height where the coronal magnetic field has become radial, thus avoiding the need to model the complex inner coronal magnetic field, and (ii) give accurate rotation rates for the corona, of crucial importance to the accuracy of solar wind models and forecasts.&lt;/p&gt;


2009 ◽  
Vol 5 (S264) ◽  
pp. 356-358 ◽  
Author(s):  
P. K. Manoharan

AbstractIn this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985–2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the source of solar wind changes globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has significantly reduced in the present low level of activity.


1995 ◽  
pp. 165-170 ◽  
Author(s):  
E. J. Smith ◽  
M. Neugebauer ◽  
A. Balogh ◽  
S. J. Bame ◽  
R. P. Lepping ◽  
...  

2007 ◽  
Vol 25 (5) ◽  
pp. 1183-1197 ◽  
Author(s):  
M. L. Parkinson ◽  
R. C. Healey ◽  
P. L. Dyson

Abstract. Multi-scale structure of the solar wind in the ecliptic at 1 AU undergoes significant evolution with the phase of the solar cycle. Wind spacecraft measurements during 1995 to 1998 and ACE spacecraft measurements during 1997 to 2005 were used to characterise the evolution of small-scale (~1 min to 2 h) fluctuations in the solar wind speed vsw, magnetic energy density B2, and solar wind ε parameter, in the context of large-scale (~1 day to years) variations. The large-scale variation in ε most resembled large-scale variations in B2. The probability density of large fluctuations in ε and B2 both had strong minima during 1995, a familiar signature of solar minimum. Generalized Structure Function (GSF) analysis was used to estimate inertial range scaling exponents aGSF and their evolution throughout 1995 to 2005. For the entire data set, the weighted average scaling exponent for small-scale fluctuations in vsw was aGSF=0.284±0.001, a value characteristic of intermittent MHD turbulence (>1/4), whereas the scaling exponents for corresponding fluctuations in B2 and ε were aGSF=0.395±0.001 and 0.334±0.001, respectively. These values are between the range expected for Gaussian fluctuations (1/2) and Kolmogorov turbulence (1/3). However, the scaling exponent for ε changed from a Gaussian-Kolmogorov value of 0.373±0.005 during 1997 (end of solar minimum) to an MHD turbulence value of 0.247±0.004 during 2003 (recurrent fast streams). Changes in the characteristics of solar wind turbulence may be reproducible from one solar cycle to the next.


2003 ◽  
Vol 21 (6) ◽  
pp. 1303-1313 ◽  
Author(s):  
K. Scherer ◽  
H. J. Fahr

Abstract. Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind) and up to 6–7 (downwind) preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.Key words. Interplanetary physics (heliopause and solar wind termination; general or miscellaneous) – Space plasma physics (experimental and mathematical techniques)


Sign in / Sign up

Export Citation Format

Share Document