scholarly journals Observing a black hole event horizon: (sub)millimeter VLBI of Sgr A*

2009 ◽  
Vol 5 (S261) ◽  
pp. 271-276 ◽  
Author(s):  
Vincent L. Fish ◽  
Sheperd S. Doeleman

AbstractVery strong evidence suggests that Sagittarius A*, a compact radio source at the center of the Milky Way, marks the position of a super massive black hole. The proximity of Sgr A* in combination with its mass makes its apparent event horizon the largest of any black hole candidate in the universe and presents us with a unique opportunity to observe strong-field GR effects. Recent millimeter very long baseline interferometric observations of Sgr A* have demonstrated the existence of structures on scales comparable to the Schwarzschild radius. These observations already provide strong evidence in support of the existence of an event horizon. (Sub)Millimeter VLBI observations in the near future will combine the angular resolution necessary to identify the overall morphology of quiescent emission, such as an accretion disk or outflow, with a fine enough time resolution to detect possible periodicity in the variable component of emission. In the next few years, it may be possible to identify the spin of the black hole in Sgr A*, either by detecting the periodic signature of hot spots at the innermost stable circular orbit or parameter estimation in models of the quiescent emission. Longer term, a (sub)millimeter VLBI “Event Horizon Telescope” will be able to produce images of the Galactic center emission to the see the silhouette predicted by general relativistic lensing. These techniques are also applicable to the black hole in M87, where black hole spin may be key to understanding the jet-launching region.

1998 ◽  
Vol 184 ◽  
pp. 307-308
Author(s):  
Sera Markoff ◽  
Fulvio Melia ◽  
Ina Sarcevic

The recent detection of a γ-ray flux from the direction of the Galactic center by EGRET on the Compton GRO raises the question of whether this is a point source (possibly coincident with the massive black hole candidate Sgr A∗) or a diffuse emitter. Using the latest experimental particle physics data and theoretical models, we have examined in detail the γ-ray spectrum produced by synchrotron, inverse Compton scattering and mesonic decay resulting from the interaction of relativistic protons with hydrogen accreting onto a point-like object. Such a distribution of high-energy baryons may be expected to form within an accretion shock as the inflowing gas becomes supersonic. This scenario is motivated by hydrodynamic studies of Bondi-Hoyle accretion onto Sgr A∗, which indicate that many of its radiative characteristics may ultimately be associated with energy liberated as this plasma descends down into the deep potential well. Earlier attempts at analyzing this process concluded that the EGRET data are inconsistent with a massive point-like object (Mastichiadis & Ozernoy, 1994). Our results demonstrate that a more careful treatment of the physics of p-p scattering suggests that a ~ 106M⊙ black hole may be contributing to this high-energy emission.


2020 ◽  
Vol 636 ◽  
pp. L5 ◽  
Author(s):  
◽  
R. Abuter ◽  
A. Amorim ◽  
M. Bauböck ◽  
J. P. Berger ◽  
...  

The star S2 orbiting the compact radio source Sgr A* is a precision probe of the gravitational field around the closest massive black hole (candidate). Over the last 2.7 decades we have monitored the star’s radial velocity and motion on the sky, mainly with the SINFONI and NACO adaptive optics (AO) instruments on the ESO VLT, and since 2017, with the four-telescope interferometric beam combiner instrument GRAVITY. In this Letter we report the first detection of the General Relativity (GR) Schwarzschild Precession (SP) in S2’s orbit. Owing to its highly elliptical orbit (e = 0.88), S2’s SP is mainly a kink between the pre-and post-pericentre directions of motion ≈±1 year around pericentre passage, relative to the corresponding Kepler orbit. The superb 2017−2019 astrometry of GRAVITY defines the pericentre passage and outgoing direction. The incoming direction is anchored by 118 NACO-AO measurements of S2’s position in the infrared reference frame, with an additional 75 direct measurements of the S2-Sgr A* separation during bright states (“flares”) of Sgr A*. Our 14-parameter model fits for the distance, central mass, the position and motion of the reference frame of the AO astrometry relative to the mass, the six parameters of the orbit, as well as a dimensionless parameter fSP for the SP (fSP = 0 for Newton and 1 for GR). From data up to the end of 2019 we robustly detect the SP of S2, δϕ ≈ 12′ per orbital period. From posterior fitting and MCMC Bayesian analysis with different weighting schemes and bootstrapping we find fSP = 1.10 ± 0.19. The S2 data are fully consistent with GR. Any extended mass inside S2’s orbit cannot exceed ≈0.1% of the central mass. Any compact third mass inside the central arcsecond must be less than about 1000 M⊙.


2010 ◽  
Vol 6 (S275) ◽  
pp. 68-76 ◽  
Author(s):  
Heino Falcke ◽  
Sera Markoff ◽  
Geoffrey C. Bower ◽  
Charles F. Gammie ◽  
Monika Mościbrodzka ◽  
...  

AbstractOf all possible black hole sources, the event horizon of the Galactic Center black hole, Sgr A*, subtends the largest angular scale on the sky. It is therefore a prime candidate to study and image plasma processes in strong gravity and it even allows imaging of the shadow cast by the event horizon. Recent mm-wave VLBI and radio timing observations as well as numerical GRMHD simulations now have provided several breakthroughs that put Sgr A* back into the focus. Firstly, VLBI observations have now measured the intrinsic size of Sgr A* at multiple frequencies, where the highest frequency measurements have approached the scale of the black hole shadow. Moreover, measurements of the radio variability show a clear time lag between 22 GHz and 43 GHz. The combination of size and timing measurements, allows one to actually measure the flow speed and direction of magnetized plasma at some tens of Schwarzschild radii. This data strongly support a moderately relativistic outflow, consistent with an accelerating jet model. This is compared to recent GRMHD simulation that show the presence of a moderately relativistic outflow coupled to an accretion flow Sgr A*. Further VLBI and timing observations coupled to simulations have the potential to map out the velocity profile from 5-40 Schwarzschild radii and to provide a first glimpse at the appearance of a jet-disk system near the event horizon. Future submm-VLBI experiments would even be able to directly image those processes in strong gravity and directly confirm the presence of an event horizon.


Universe ◽  
2018 ◽  
Vol 4 (8) ◽  
pp. 86 ◽  
Author(s):  
Jean-Pierre Luminet

Astronomical observations are about to deliver the very first telescopic image of the massive black hole lurking at the Galactic Center. The mass of data collected in one night by the Event Horizon Telescope network, exceeding everything that has ever been done in any scientific field, should provide a recomposed image in 2018. All this, forty years after the first numerical simulations performed by the present author.


2017 ◽  
Vol 26 (02) ◽  
pp. 1730001 ◽  
Author(s):  
C. Goddi ◽  
H. Falcke ◽  
M. Kramer ◽  
L. Rezzolla ◽  
C. Brinkerink ◽  
...  

Einstein’s General theory of relativity (GR) successfully describes gravity. Although GR has been accurately tested in weak gravitational fields, it remains largely untested in the general strong field cases. One of the most fundamental predictions of GR is the existence of black holes (BHs). After the recent direct detection of gravitational waves by LIGO, there is now near conclusive evidence for the existence of stellar-mass BHs. In spite of this exciting discovery, there is not yet direct evidence of the existence of BHs using astronomical observations in the electromagnetic spectrum. Are BHs observable astrophysical objects? Does GR hold in its most extreme limit or are alternatives needed? The prime target to address these fundamental questions is in the center of our own Milky Way, which hosts the closest and best-constrained supermassive BH candidate in the universe, Sagittarius A* (Sgr A*). Three different types of experiments hold the promise to test GR in a strong-field regime using observations of Sgr A* with new-generation instruments. The first experiment consists of making a standard astronomical image of the synchrotron emission from the relativistic plasma accreting onto Sgr A*. This emission forms a “shadow” around the event horizon cast against the background, whose predicted size ([Formula: see text]as) can now be resolved by upcoming very long baseline radio interferometry experiments at mm-waves such as the event horizon telescope (EHT). The second experiment aims to monitor stars orbiting Sgr A* with the next-generation near-infrared (NIR) interferometer GRAVITY at the very large telescope (VLT). The third experiment aims to detect and study a radio pulsar in tight orbit about Sgr A* using radio telescopes (including the Atacama large millimeter array or ALMA). The BlackHoleCam project exploits the synergy between these three different techniques and contributes directly to them at different levels. These efforts will eventually enable us to measure fundamental BH parameters (mass, spin, and quadrupole moment) with sufficiently high precision to provide fundamental tests of GR (e.g. testing the no-hair theorem) and probe the spacetime around a BH in any metric theory of gravity. Here, we review our current knowledge of the physical properties of Sgr A* as well as the current status of such experimental efforts towards imaging the event horizon, measuring stellar orbits, and timing pulsars around Sgr A*. We conclude that the Galactic center provides a unique fundamental-physics laboratory for experimental tests of BH accretion and theories of gravity in their most extreme limits.


2013 ◽  
Vol 9 (S303) ◽  
pp. 254-263
Author(s):  
S. Gillessen ◽  
R. Genzel ◽  
T. K. Fritz ◽  
F. Eisenhauer ◽  
O. Pfuhl ◽  
...  

AbstractIn 2011, we discovered a compact gas cloud (“G2”) with roughly three Earth masses that is falling on a near-radial orbit toward the massive black hole in the Galactic center. The orbit is well constrained and pericenter passage is predicted for early 2014. Our data beautifully show that G2 gets tidally sheared apart due to the massive black hole's force. During the next months, we expect that in addition to the tidal effects, hydrodynamics get important, when G2 collides with the hot ambient gas around Sgr A*. Simulations show that ultimately, the cloud's material might fall into the massive black hole. Predictions for the accretion rate and luminosity evolution, however, are very difficult due to the many unknowns. Nevertheless, this might be a unique opportunity in the next years to observe how gas feeds a massive black hole in a galactic nucleus.


2013 ◽  
Vol 9 (S303) ◽  
pp. 298-302
Author(s):  
J. Dexter

AbstractVery long baseline interferometry observations at millimeter wavelengths have detected source structure in Sgr A* on event horizon scales. Near-infrared interferometry will achieve similar resolution in the next few years. These experiments provide an unprecedented opportunity to explore strong gravity around black holes, but interpreting the data requires physical modeling. I discuss the calculation of images, spectra, and light curves from relativistic MHD simulations of black hole accretion. The models provide an excellent description of current observations, and predict that we may be on the verge of detecting a black hole shadow, which would constitute the first direct evidence for the existence of black holes.


1997 ◽  
Vol 163 ◽  
pp. 637-646
Author(s):  
F. Melia

AbstractStellar kinematic studies indicate the presence of a concentrated central mass at just under 2 × 106M⊙, in close agreement with the mass deduced from gas velocities measured with the [Ne II] line. Although this mass is most likely a black hole, it may be dominated by a tightly concentrated cluster of stellar remnants. If Sgr A*, a point radio source coincident with this central mass, is a massive black hole embedded in a region with strong gaseous outflows, as suggested by the observation of He I, Brα and Brγ line emission, it is accreting from its environment via the Bondi-Hoyle process. We discuss the consequences of this activity, including the expected mass and angular momentum accretion rate onto the black hole, and the resulting observable characteristics. The latest infrared images of this region appear to rule out the possibility that this large scale flow settles down into a standard α-disk at small radii. We discuss some possible scenarios that might account for this, including strong advection in the disk or the presence of a massive, fossilized disk. Not all of the gas affected in this way by Sgr A*’s strong gravitational field becomes bound. Some of it is redirected into a focused flow that in turn interacts with other coherent gas structures near the black hole. We suggest that the mini-cavity (to the south-west of Sgr A*) may be formed as a result of this activity, and argue that the characteristics of the mini-cavity lend some observational support for the presence of a concentrated mass near Sgr A*. We show, however, that as far as the mini-cavity is concerned, this concentrated mass need not be in the form of a point mass, but may instead be a highly concentrated cluster of stellar remnants.


Sign in / Sign up

Export Citation Format

Share Document