ROCHE: Analysis of Eclipsing Binary Multi-Dataset Observables

2011 ◽  
Vol 7 (S282) ◽  
pp. 279-282 ◽  
Author(s):  
Theodor Pribulla

AbstractCode ROCHE is devoted to modeling multi-dataset observations of close eclipsing binaries such as radial velocities, multi-wavelength light curves, and broadening functions. The code includes circular surface spots, eccentric orbits, asynchronous or/and differential rotation, and third light. The program makes use of synthetic spectra to compute observed UBVRIJHK magnitudes from the surface model and the parallax. The surface grid is derived from a regular icosahedron to secure more-or-less equal (triangular) surface elements with observed intensities computed from synthetic spectra for supplied passband transmission curves. The limb-darkening is automatically interpolated from the tables after each computing step. All proximity effects (tidal deformation, reflection effect, gravity darkening) are taken into account. Integration of synthetic curves is improved by adaptive phase step (important for wide eclipsing systems).The code is still under development. It is planned to extend its capabilities towards low mass ratios and widely different radii of components to facilitate modeling of extrasolar planet transits. Another planned extension of the code will be modeling of spatially-resolved eclipsing binaries using relative visual orbits and/or interferometric visibilities.

Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


2018 ◽  
Vol 476 (4) ◽  
pp. 5253-5267 ◽  
Author(s):  
Patricia Cruz ◽  
Marcos Diaz ◽  
Jayne Birkby ◽  
David Barrado ◽  
Brigitta Sipöcz ◽  
...  
Keyword(s):  
Low Mass ◽  

2004 ◽  
Vol 194 ◽  
pp. 146-147 ◽  
Author(s):  
K. Werner ◽  
T. Nagel ◽  
S. Dreizler ◽  
T. Rauch

AbstractWe report on first results of computing synthetic spectra from H/He-poor accretion disks in ultracompact LMXBs. We aim at the determination of the chemical composition of the very low-mass donor star, which is the core of a former C/O white dwarf. The abundance analysis allows to draw conclusions on gravitational settling in WDs which is an important process affecting cooling times and pulsational g-mode periods.


2015 ◽  
Vol 2 (1) ◽  
pp. 183-187 ◽  
Author(s):  
L. Y. Zhu ◽  
S. B. Qian ◽  
E.-G. Zhao ◽  
E. Fernández Lajús ◽  
Z.-T. Han

The sdB-type close binaries are believed to have experienced a common-envelope phase and may evolve into cataclysmic binaries (CVs). About 10% of all known sdB binaries are eclipsing binaries consisting of very hot subdwarf primaries and low-mass companions with short orbital periods. The eclipse profiles of these systems are very narrow and deep, which benefits the determination of high precise eclipsing times and makes the detection of small and close-in tertiary bodies possible. Since 2006 we have monitored some sdB-type eclipsing binaries to search for the close-in substellar companions by analyzing the light travel time effect. Here some progresses of the program are reviewed and the formation of sdB-type binary is discussed.


2009 ◽  
Author(s):  
R. W. Clark ◽  
J. L. Giuliani ◽  
J. W. Thornhill ◽  
Y. K. Chong ◽  
A. Dasgupta ◽  
...  

1996 ◽  
Vol 176 ◽  
pp. 469-476 ◽  
Author(s):  
M. Siarkowski

The Sun is the only star whose X-ray emitting, strongly inhomogenous corona can be spatially resolved via direct observations. For other late type-stars it is known that coronae do exist, but the spatial distribution of their emission is largely unknown. However in the case of eclipsing binaries this spatial structure can be potentially deduced from the orbital modulation of the observed X-ray light curve. The best candidates for this kind of analysis are RS CVn binaries, the most active and luminous late-type X-ray coronal sources. These are detached binaries with periods typically between 0.5 and 20 days, in which one or both stars have evolved into subgiant or giant of spectral type G or K. For short orbital periods (< 14 days) the tidal forces lead to synchronization of the orbital and rotational periods, so these systems rotate rigidly.


2008 ◽  
Vol 4 (S258) ◽  
pp. 161-170 ◽  
Author(s):  
Keivan G. Stassun ◽  
Leslie Hebb ◽  
Mercedes López-Morales ◽  
Andrej Prša

AbstractEclipsing binary stars provide highly accurate measurements of the fundamental physical properties of stars. They therefore serve as stringent tests of the predictions of evolutionary models upon which most stellar age determinations are based. Models generally perform very well in predicting coeval ages for eclipsing binaries with main-sequence components more massive than ≈1.2 M⊙; relative ages are good to ~5% or better in this mass regime. Low-mass main-sequence stars (M < 0.8 M⊙) reveal large discrepancies in the model predicted ages, primarily due to magnetic activity in the observed stars that appears to inhibit convection and likely causes the radii to be 10–20% larger than predicted. In mass-radius diagrams these stars thus appear 50–90% older or younger than they really are. Aside from these activity-related effects, low-mass pre–main-sequence stars at ages ~1 Myr can also show non-coevality of ~30% due to star formation effects, however these effects are largely erased after ~10 Myr.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Patricio Lagos ◽  
Polychronis Papaderos

We review the results from our studies, and previous published work, on the spatially resolved physical properties of a sample of Hii/BCD galaxies, as obtained mainly from integral-field unit spectroscopy with Gemini/GMOS and VLT/VIMOS. We confirm that, within observational uncertainties, our sample galaxies show nearly spatially constant chemical abundances similar to other low-mass starburst galaxies. They also show Heii  λ4686 emission with the properties being suggestive of a mix of excitation sources and with Wolf-Rayet stars being excluded as the primary ones. Finally, in this contribution, we include a list of all Hii/BCD galaxies studied thus far with integral-field unit spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document