scholarly journals Stellar cycles: general properties and future directions

2011 ◽  
Vol 7 (S286) ◽  
pp. 257-267
Author(s):  
Mark S. Giampapa

AbstractWe discuss the general properties of stellar cycles with emphasis on their amplitudes as a function of stellar parameters, particularly those stellar characteristics relevant to dynamo-driven magnetic activity. We deduce an empirical scaling relation between cycle frequency and differential rotation based on previously established empirical relations. We also compare the recent Cycle 23 to cycles in solar-type stars. We find that the extended minimum of Cycle 23 resembled in its Ca II H & K emission at minimum the mean levels of activity seen in stars with no cycles.

2019 ◽  
Vol 626 ◽  
pp. A38 ◽  
Author(s):  
A. F. Lanza ◽  
Y. Netto ◽  
A. S. Bonomo ◽  
H. Parviainen ◽  
A. Valio ◽  
...  

Context. The study of young Sun-like stars is fundamental to understanding the magnetic activity and rotational evolution of the Sun. Space-borne photometry by the Kepler telescope provides unprecedented datasets to investigate these phenomena in Sun-like stars. Aims. We present a new analysis of the entire Kepler photometric time series of the moderately young Sun-like star Kepler-17 accompanied by a transiting hot Jupiter. Methods. We applied a maximum-entropy spot model to the long-cadence out-of-transit photometry of the target to derive maps of the starspot filling factor versus the longitude and the time. These maps are compared to the spots occulted during transits to validate our reconstruction and derive information on the latitudes of the starspots. Results. We find two main active longitudes on the photosphere of Kepler-17, one of which has a lifetime of at least ∼1400 days although with a varying level of activity. The latitudinal differential rotation is of solar type, that is, with the equator rotating faster than the poles. We estimate a minimum relative amplitude ΔΩ/Ω between ∼0.08 ± 0.05 and 0.14 ± 0.05, our determination being affected by the finite lifetime of individual starspots and depending on the adopted spot model parameters. We find marginal evidence of a short-term intermittent activity cycle of ∼48 days and an indication of a longer cycle of 400−600 days characterized by an equatorward migration of the mean latitude of the spots as in the Sun. The rotation of Kepler-17 is likely to be significantly affected by the tides raised by its massive close-by planet. Conclusion. We confirm the reliability of maximum-entropy spot models to map starspots in young active stars and characterize the activity and differential rotation of this young Sun-like planetary host.


2011 ◽  
Vol 7 (S282) ◽  
pp. 478-479 ◽  
Author(s):  
Katalin Oláh ◽  
Zsolt Kővári ◽  
Krisztián Vida ◽  
Klaus G. Strassmeier

AbstractWe use more than three decades-long photometry to study the activity patterns on the two fast-rotating subgiant components in EI Eri (G5IV) and V711 Tau (K1IV). From yearly mean rotational periods from the light curves, we find that EI Eri, with well-measured solar-type differential rotation, always has spots from the equator to high latitudes. The measured differential rotation of V711 Tau is controversial, and in any case is very small. The spots on the K1IV star in V711 Tau seem to be tidally locked. The physical parameters of the two systems are similar, with one remarkable difference: EI Eri has a low mass M4-5 dwarf companion, whereas V711 Tau has a G5V star in the system, thus their mass centers are in very different positions. This may modify the whole internal structure of the active stars, causing marked differences in their surface features.


2018 ◽  
Vol 13 (S340) ◽  
pp. 275-280
Author(s):  
Maria A. Weber

AbstractOur understanding of stellar dynamos has largely been driven by the phenomena we have observed of our own Sun. Yet, as we amass longer-term datasets for an increasing number of stars, it is clear that there is a wide variety of stellar behavior. Here we briefly review observed trends that place key constraints on the fundamental dynamo operation of solar-type stars to fully convective M dwarfs, including: starspot and sunspot patterns, various magnetism-rotation correlations, and mean field flows such as differential rotation and meridional circulation. We also comment on the current insight that simulations of dynamo action and flux emergence lend to our working knowledge of stellar dynamo theory. While the growing landscape of both observations and simulations of stellar magnetic activity work in tandem to decipher dynamo action, there are still many puzzles that we have yet to fully understand.


2020 ◽  
Vol 644 ◽  
pp. A2
Author(s):  
R. V. Ibañez Bustos ◽  
A. P. Buccino ◽  
S. Messina ◽  
A. F. Lanza ◽  
P. J. D. Mauas

Aims. Recently, new debates about the role of layers of strong shear have emerged in stellar dynamo theory. Further information on the long-term magnetic activity of fully convective stars could help determine whether their underlying dynamo could sustain activity cycles similar to the solar one. Methods. We performed a thorough study of the short- and long-term magnetic activity of the young active dM4 star Gl 729. First, we analyzed long-cadence K2 photometry to characterize its transient events (e.g., flares) and global and surface differential rotation. Then, from the Mount Wilson S-indexes derived from CASLEO spectra and other public observations, we analyzed its long-term activity between 1998 and 2020 with four different time-domain techniques to detect cyclic patterns. Finally, we explored the chromospheric activity at different heights with simultaneous measurements of the Hα and the Na I D indexes, and we analyzed their relations with the S-Index. Results. We found that the cumulative flare frequency follows a power-law distribution with slope ~−0.73 for the range 1032–1034 erg. We obtained Prot = (2.848 ± 0.001) days, and we found no evidence of differential rotation. We also found that this young active star presents a long-term activity cycle with a length of about 4 yr; there is less significant evidence of a shorter cycle of 0.8 yr. The star also shows a broad activity minimum between 1998 and 2004. We found a correlation between the S index, on the one hand, and the Hα the Na I D indexes, on the other hand, although the saturation level of these last two indexes is not observed in the Ca lines. Conclusions. Because the maximum-entropy spot model does not reflect migration between active longitudes, this activity cycle cannot be explained by a solar-type dynamo. It is probably caused by an α2-dynamo.


2013 ◽  
Vol 9 (S302) ◽  
pp. 148-149
Author(s):  
Carolyn Brown ◽  
Brad Carter ◽  
Stephen Marsden ◽  
Ian Waite

AbstractDoppler Imaging of starspots on young solar analogues is a way to investigate the early history of solar magnetic activity by proxy. Doppler images of young G-dwarfs have yielded the presence of large polar spots, extending to moderate latitudes, along with measurements of the surface differential rotation. The differential rotation measurement for one star (RX J0850.1-7554) suggests it is possibly the first example of a young G-type dwarf whose surface rotates as almost a solid body, in marked contrast to the differential rotation of other rapidly rotating young G-dwarfs and the present-day Sun. Overall, our Doppler imaging results show that the young Sun possessed a fundamentally different dynamo to today.


1991 ◽  
Vol 130 ◽  
pp. 353-369 ◽  
Author(s):  
Douglas S. Hall

AbstractSpottedness, as evidenced by photometric variability in 277 late-type binary and single stars, is found to occur when the Rossby number is less than about 2/3. This holds true when the convective turnover time versus B–V relation of Gilliland is used for dwarfs and also for subgiants and giants if their turnover times are twice and four times longer, respectively, than for dwarfs. Differential rotation is found correlated with rotation period (rapidly rotating stars approaching solid-body rotation) and also with lobe-filling factor (the differential rotation coefficient k is 2.5 times larger for F = 0 than F = 1). Also reviewed are latitude extent of spottedness, latitude drift during a solar-type cycle, sector structure and preferential longitudes, starspot lifetimes, and the many observational manifestations of magnetic cycles.


2009 ◽  
Vol 5 (S264) ◽  
pp. 219-221 ◽  
Author(s):  
Kwing L. Chan

AbstractA general picture of differential rotation in cool stars is that they are ‘solar-like’, with the equator spinning faster than the poles. Such surface differential rotation profiles have also been demonstrated by some three-dimensional simulations. In our numerical investigation of rotating convection (both regional and global), we found that this picture is not universally applicable. The equator may spin substantially slower than the poles (Ωequator − Ωpole)/Ω can reach −50%). The key parameter that determines the transition in behavior is the Coriolis number (inverse Rossby number). ‘Negative’ differential rotation of the equator (relative to the mean rotation) occurs if the Coriolis number is below a critical value.


2021 ◽  
Author(s):  
Hening Liu ◽  
Yuzhao Zhang

We examine a production-based asset pricing model with regime-switching productivity growth, learning, and ambiguity. Both the mean and volatility of the growth rate of productivity are assumed to follow a Markov chain with an unobservable state. The agent’s preferences are characterized by the generalized recursive smooth ambiguity utility function. Our calibrated benchmark model with modest risk aversion can match moments of the variance risk premium in the data and reconcile empirical relations between the risk-neutral variance and macroeconomic quantities and their respective volatilities. We show that the interplay between productivity volatility risk and ambiguity aversion is important for pricing variance risk in returns. This paper was accepted by Tomasz Piskorski, finance.


2005 ◽  
Vol 23 (3) ◽  
pp. 827-830 ◽  
Author(s):  
G. W. Prölss

Abstract. A prominent peak in the electron temperature of the topside ionosphere is observed beneath the magnetospheric cleft. The present study uses DE-2 data obtained in the Northern Winter Hemisphere to investigate this phenomenon. First, the dependence of the location and magnitude of the temperature peak on the magnetic activity is determined. Next, using a superposed epoch analysis, the mean latitudinal profile of the temperature enhancement is derived. The results of the present study are compared primarily with those obtained by Titheridge (1976), but also with more recent observations and theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document