scholarly journals Recycling Pulsars: spins, masses and ages

2012 ◽  
Vol 8 (S291) ◽  
pp. 137-140 ◽  
Author(s):  
T. M. Tauris ◽  
M. Kramer ◽  
N. Langer

AbstractAlthough the first millisecond pulsars (MSPs) were discovered 30 years ago we still do not understand all details of their formation process. Here, we present new results from Tauris, Langer & Kramer (2012) on the recycling scenario leading to radio MSPs with helium or carbon-oxygen white dwarf companions via evolution of low- and intermediate mass X-ray binaries (LMXBs, IMXBs). We discuss the location of the spin-up line in the PṖ–diagram and estimate the amount of accreted mass needed to obtain a given spin period and compare with observations. Finally, we constrain the true ages of observed recycled pulsars via calculated isochrones in the PṖ–diagram.

2003 ◽  
Vol 214 ◽  
pp. 215-217
Author(s):  
Q. Z. Liu ◽  
X. D. Li ◽  
D. M. Wei

The relation between the spin period (Ps) and the orbital period (Po) in high-mass X-ray binaries (HMXBs) is investigated. In order for Be/X-ray binaries to locate above the critical line of observable X-ray emission due to accretion, it is necessary for an intermediate orbital eccentricity to be introduced. We suggest that some peculiar systems in the Po − Ps diagram are caused by their peculiar magnetic fields.


1983 ◽  
Vol 72 ◽  
pp. 155-172
Author(s):  
Brian Warner

Until 1976, cataclysmic variable star research proceeded with few requirements for the inclusion of magnetic fields in theoretical models. Although models for low-mass X-ray binaries stressed the importance of magnetic fields (Lamb et at. 1973) and there was an increasing number of known magnetic single white dwarfs (Angel 1977), and a magnetised white dwarf had been one of the models proposed to explain the rapid oscillations in DQ Her (Herbst et al. 1974, Katz 1975), there was no anticipation of the more general role that magnetic fields now seem destined to play. The two major reviews of the time (Robinson 1976, Warner 1976) scarcely considered the presence of magnetic fields.


1997 ◽  
Vol 163 ◽  
pp. 828-829 ◽  
Author(s):  
R. F. Webbink ◽  
V. Kalogera

AbstractConsiderations of donor star stability, age, and mass transfer rate show that low-mass X-ray binaries and binary millisecond pulsars with orbital periods longer than a few days must have survived an initial phase of super-Eddington mass transfer. We review the physical arguments leading to this conclusion, and examine its implications for the apparent discrepancy between the death rate for low-mass X-ray binaries and the birth rate of binary millisecond pulsars.


2020 ◽  
Vol 494 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Wynn C G Ho ◽  
M J P Wijngaarden ◽  
Nils Andersson ◽  
Thomas M Tauris ◽  
F Haberl

ABSTRACT The application of standard accretion theory to observations of X-ray binaries provides valuable insights into neutron star (NS) properties, such as their spin period and magnetic field. However, most studies concentrate on relatively old systems, where the NS is in its late propeller, accretor, or nearly spin equilibrium phase. Here, we use an analytic model from standard accretion theory to illustrate the evolution of high-mass X-ray binaries (HMXBs) early in their life. We show that a young NS is unlikely to be an accretor because of the long duration of ejector and propeller phases. We apply the model to the recently discovered ∼4000 yr old HMXB XMMU J051342.6−672412 and find that the system’s NS, with a tentative spin period of 4.4 s, cannot be in the accretor phase and has a magnetic field B > a few × 1013 G, which is comparable to the magnetic field of many older HMXBs and is much higher than the spin equilibrium inferred value of a few × 1011 G. The observed X-ray luminosity could be the result of thermal emission from a young cooling magnetic NS or a small amount of accretion that can occur in the propeller phase.


2004 ◽  
Vol 190 ◽  
pp. 120-123
Author(s):  
Christopher W. Mauche

AbstractWe use hard X-ray light curves measured by the Chandra HETG and RXTE PCA during the late rise and plateau phases of the 2002 March–April outburst of the intermediate polar GK Per to determine that its X-ray pulse period P = 351.332 ± 0.002 s. Combined with previous X-ray and optical measurements of the spin period of the white dwarf, we find that its spin-up rate Ṗ = 0.00027 ± 0.00005 s yr−1.


1996 ◽  
Vol 158 ◽  
pp. 213-214 ◽  
Author(s):  
Gavin Ramsay ◽  
Paul A. Mason

We present preliminary results of an analysis of X-ray and optical data of the asynchronous AM Her star BY Cam [1]. We use X-ray data from EXOSAT (0.1… 50 keV), Ginga (1.5… 50 keV) and ROSAT (0.1…2.0 keV) and optical data obtained during a 45-day campaign in 1994.There are 4 known periods: the orbital period (201.30 m), the spin period of the white dwarf (199.3303 m), a spin-orbit beat period (14.15 d) and a side-band period (197.4 m). The detection of this side-band period lends credence to the theory of [2], who suggest that for a stream accreting, diskless, magnetic CV a frequency, f = 2ωspin − Ωorb (=197.399 m), will appear as a strong spike in the power spectrum for certain systems. Wu & Mason (this volume) discuss a competing model where Pspin = 197.4 m.


Sign in / Sign up

Export Citation Format

Share Document