scholarly journals The rapid evolution of dust content in galaxies over the last five billion years

2012 ◽  
Vol 8 (S292) ◽  
pp. 275-278
Author(s):  
H. L. Gomez ◽  
L. Dunne ◽  
D. J. B. Smith ◽  
E. da Cunha

AbstractThe Herschel-ATLAS (H-ATLAS) will provide an unrivalled sample of galaxies, probing the normal star-forming submillimetre population of galaxies for the first time. Here, we exploit the Science Demonstration Phase (SDP) data to model the evolution of the interstellar content of galaxies in recent history. The most massive H-ATLAS galaxies show a large increase in the dust content five billion years ago compared to the present epoch. These observations are difficult to explain using standard dust models, one possibility could be contributions from a non-stellar source of dust e.g. grain growth in dense clouds; this would imply that less than 10% of dust would be condensed in stellar atmospheres. Alternatively, an initial mass function which becomes top heavy at high star formation rate densities could also explain this discrepancy.

2012 ◽  
Vol 8 (S292) ◽  
pp. 87-90
Author(s):  
L. Testi ◽  
E. Bressert ◽  
S. Longmore

AbstractWe summarize some of the results obtained from Herschel surveys of nearby star forming regions and the Galactic plane. We show that in the nearby star forming regions the starless core spatial surface density distribution is very similar to that of the young stellar objects. This, taken together with the similarity between the core mass function and the initial mass function for stars and the relationship between the amount of dense gas and star formation rate, suggest that the cloud fragmentation process defines the global outcome of star formation. This “simple” view of star formation may not hold on all scales. In particular dynamical interactions are expected to become important at the conditions required to form young massive clusters. We describe the successes of a simple criterion to identify young massive cluster precursors in our Galaxy based on (sub-)millimeter wide area surveys. We further show that in the location of our Galaxy where the best candidate for a precursor of a young massive cluster is found, the “simple” scaling relationship between dense gas and star formation rate appear to break down. We suggest that in regions where the conditions approach those of the central molecular zone of our Galaxy it may be necessary to revise the scaling laws for star formation.


2015 ◽  
Vol 10 (S314) ◽  
pp. 276-279
Author(s):  
Sarah L. Martell

AbstractGalactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.


2016 ◽  
Vol 25 (1) ◽  
Author(s):  
S. Sichevsky ◽  
O. Malkov

AbstractDeveloping methods for analyzing and extracting information from modern sky surveys is a challenging task in astrophysical studies. We study possibilities of parameterizing stars and interstellar medium from multicolor photometry performed in three modern photometric surveys: GALEX, SDSS, and 2MASS. For this purpose, we have developed a method to estimate stellar radius from effective temperature and gravity with the help of evolutionary tracks and model stellar atmospheres. In accordance with the evolution rate at every point of the evolutionary track, star formation rate, and initial mass function, a weight is assigned to the resulting value of radius that allows us to estimate the radius more accurately. The method is verified for the most populated areas of the Hertzsprung-Russell diagram: main-sequence stars and red giants, and it was found to be rather precise (for main-sequence stars, the average relative error of radius and its standard deviation are 0.03% and 3.87%, respectively).


2012 ◽  
Vol 10 (H16) ◽  
pp. 495-527
Author(s):  
V. Buat ◽  
J. Braine ◽  
D. A. Dale ◽  
A. Hornschemeier ◽  
B. Lehmer ◽  
...  

AbstractStar-formation is one of the main processes that shape galaxies, and together with black-hole accretion activity the two agents of energy production in galaxies. It is important on a range of scales from star clusters/OB associations to galaxy-wide and even group/cluster scales. Recently, studies of star-formation in sub-galactic and galaxy-wide scales have met significant advances owing to: (a) developments in the theory of stellar evolution, stellar atmospheres, and radiative transfer in the interstellar medium; (b) the availability of more sensitive and higher resolution data; and (c) observations in previously poorly charted wavebands (e.g. Ultraviolet, Infrared, and X-rays). These data allow us to study more galaxies at ever-increasing distances and nearby galaxies in greater detail, and different modes of star formation activity such as massive star formation and low level continuous star formation in a variety of environments. In this contribution we summarize recent results in the fields of multi-wavelength calibrations of star-formation rate indicators, the Stellar Initial Mass function, and radiative transfer and modeling of the Spectrale Energy Disrtributions of galaxies.


Science ◽  
2018 ◽  
Vol 359 (6371) ◽  
pp. 69-71 ◽  
Author(s):  
F. R. N. Schneider ◽  
H. Sana ◽  
C. J. Evans ◽  
J. M. Bestenlehner ◽  
N. Castro ◽  
...  

The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses (M☉). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 M☉ and contains 32 ± 12% more stars above 30 M☉ than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 M☉, the IMF power-law exponent is 1.90−0.26+0.37, shallower than the Salpeter value of 2.35.


1998 ◽  
Vol 11 (1) ◽  
pp. 423-424
Author(s):  
Motohide Tamura ◽  
Yoichi Itoh ◽  
Yumiko Oasa ◽  
Alan Tokunaga ◽  
Koji Sugitani

Abstract In order to tackle the problems of low-mass end of the initial mass function (IMF) in star-forming regions and the formation mechanisms of brown dwarfs, we have conducted deep infrared surveys of nearby molecular clouds. We have found a significant population of very low-luminosity sources with IR excesses in the Taurus cloud and the Chamaeleon cloud core regions whose extinction corrected J magnitudes are 3 to 8 mag fainter than those of typical T Tauri stars in the same cloud. Some of them are associated with even fainter companions. Follow-up IR spectroscopy has confirmed for the selected sources that their photospheric temperature is around 2000 to 3000 K. Thus, these very low-luminosity young stellar sources are most likely very low-mass T Tauri stars, and some of them might even be young brown dwarfs.


2006 ◽  
Vol 2 (S237) ◽  
pp. 358-362
Author(s):  
M. K. Ryan Joung ◽  
Mordecai-Mark Mac Low

AbstractWe report on a study of interstellar turbulence driven by both correlated and isolated supernova explosions. We use three-dimensional hydrodynamic models of a vertically stratified interstellar medium run with the adaptive mesh refinement code Flash at a maximum resolution of 2 pc, with a grid size of 0.5 × 0.5 × 10 kpc. Cold dense clouds form even in the absence of self-gravity due to the collective action of thermal instability and supersonic turbulence. Studying these clouds, we show that it can be misleading to predict physical properties such as the star formation rate or the stellar initial mass function using numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans unstable regions in our simulation is assumed to collapse and form stars in local freefall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. The amount of mass available for collapse depends on scale, suggesting a simple translation from the density PDF to the stellar IMF may be questionable. Even though the supernova-driven turbulence does produce compressed clouds, it also opposes global collapse. The net effect of supernova-driven turbulence is to inhibit star formation globally by decreasing the amount of mass unstable to gravitational collapse.


2000 ◽  
Vol 543 (2) ◽  
pp. 799-821 ◽  
Author(s):  
Shin‐ichiro Okumura ◽  
Atsushi Mori ◽  
Eiji Nishihara ◽  
Etsuji Watanabe ◽  
Takuya Yamashita

Sign in / Sign up

Export Citation Format

Share Document