scholarly journals Self-cancellation of solar ephemeral regions observed by SDO

2012 ◽  
Vol 8 (S294) ◽  
pp. 159-160
Author(s):  
Shuhong Yang ◽  
Jun Zhang ◽  
Ting Li ◽  
Yang Liu

AbstractWe study the ephemeral regions (ERs) in the quiet Sun observed by the Solar Dynamics Observatory, and find that they can be classified into two types: normal ERs (NERs) and self-cancelled ERs (SERs). We identify 2988 ERs among which there are 190 SERs, about 6.4% of the ERs. The total self-cancelled flux is 9.8% of the total ER flux. We suggest that the self-cancellation of SERs is caused by the submergence of magnetic loops connecting the dipolar patches, without magnetic energy release.

2001 ◽  
Vol 550 (1) ◽  
pp. L105-L108 ◽  
Author(s):  
A. G. Kosovichev ◽  
V. V. Zharkova

1999 ◽  
Vol 510 (2) ◽  
pp. 1045-1052 ◽  
Author(s):  
I. J. D. Craig ◽  
A. N. McClymont

2021 ◽  
Vol 647 ◽  
pp. A178
Author(s):  
T. Roudier ◽  
M. Švanda ◽  
J. M. Malherbe ◽  
J. Ballot ◽  
D. Korda ◽  
...  

Downflows on the solar surface are suspected to play a major role in the dynamics of the convection zone, at least in its outer part. We investigate the existence of the long-lasting downflows whose effects influence the interior of the Sun but also the outer layers. We study the sets of Dopplergrams and magnetograms observed with Solar Dynamics Observatory and Hinode spacecrafts and an magnetohydrodynamic (MHD) simulation. All of the aligned sequences, which were corrected from the satellite motions and tracked with the differential rotation, were used to detect the long-lasting downflows in the quiet-Sun at the disc centre. To learn about the structure of the flows below the solar surface, the time-distance local helioseismology was used. The inspection of the 3D data cube (x, y, t) of the 24 h Doppler sequence allowed us to detect 13 persistent downflows. Their lifetimes lie in the range between 3.5 and 20 h with a sizes between 2″ and 3″ and speeds between −0.25 and −0.72 km s−1. These persistent downflows are always filled with the magnetic field with an amplitude of up to 600 Gauss. The helioseismic inversion allows us to describe the persistent downflows and compare them to the other (non-persistent) downflows in the field of view. The persistent downflows seem to penetrate much deeper and, in the case of a well-formed vortex, the vorticity keeps its integrity to the depth of about 5 Mm. In the MHD simulation, only sub-arcsecond downflows are detected with no evidence of a vortex comparable in size to observations at the surface of the Sun. The long temporal sequences from the space-borne allows us to show the existence of long-persistent downflows together with the magnetic field. They penetrate inside the Sun but are also connected with the anchoring of coronal loops in the photosphere, indicating a link between downflows and the coronal activity. A links suggests that EUV cyclones over the quiet Sun could be an effective way to heat the corona.


Author(s):  
H Tong

Abstract The magnetic field of magnetars may be twisted compared with that of normal pulsars. Previous works mainly discussed magnetic energy release in the closed field line regions of magnetars. For a twisted magnetic field, the field lines will inflate in the radial direction. Similar to normal pulsars, the idea of light cylinder radius is introduced. More field lines will cross the light cylinder and become open for a twisted magnetic field. Therefore, magnetars may have a large polar cap, which may correspond to the hot spot during outburst. Particle flow in the open field line regions will result in the untwisting of the magnetic field. Magnetic energy release in the open field line regions can be calculated. The model calculations can catch the general trend of magnetar outburst: decreasing X-ray luminosity, shrinking hot spot etc. For magnetic energy release in the open field line regions, the geometry will be the same for different outburst in one magnetar.


2018 ◽  
Vol 615 ◽  
pp. L9 ◽  
Author(s):  
L. P. Chitta ◽  
H. Peter ◽  
S. K. Solanki

Context. Magnetic energy is required to heat the corona, the outer atmosphere of the Sun, to millions of degrees. Aims. We study the nature of the magnetic energy source that is probably responsible for the brightening of coronal loops driven by nanoflares in the cores of solar active regions. Methods. We consider observations of two active regions (ARs), 11890 and 12234, in which nanoflares have been detected. To this end, we use ultraviolet (UV) and extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) for coronal loop diagnostics. These images are combined with the co-temporal line-of-sight magnetic field maps from the Helioseismic and Magnetic Imager (HMI) onboard SDO to investigate the connection between coronal loops and their magnetic roots in the photosphere. Results. The core of these ARs exhibit loop brightening in multiple EUV channels of AIA, particularly in its 9.4 nm filter. The HMI magnetic field maps reveal the presence of a complex mixed polarity magnetic field distribution at the base of these loops. We detect the cancellation of photospheric magnetic flux at these locations at a rate of about 1015 Mx s−1. The associated compact coronal brightenings directly above the cancelling magnetic features are indicative of plasma heating due to chromospheric magnetic reconnection. Conclusions. We suggest that the complex magnetic topology and the evolution of magnetic field, such as flux cancellation in the photosphere and the resulting chromospheric reconnection, can play an important role in energizing active region coronal loops driven by nanoflares. Our estimate of magnetic energy release during flux cancellation in the quiet Sun suggests that chromospheric reconnection can also power the quiet corona.


2007 ◽  
Vol 14 (1) ◽  
pp. 012902 ◽  
Author(s):  
W. Horton ◽  
J.-H. Kim ◽  
F. Militello ◽  
M. Ottaviani

2020 ◽  
Author(s):  
Liping Yang ◽  
Hui Li ◽  
Fan Guo ◽  
Xiancan Li ◽  
Shengtai Li ◽  
...  

<p>We report detailed numerical studies of magnetic reconnection in high-Lundquist-number, turbulent plasma by means of a three-dimensional (3D) resistive magnetohydrodynamics model. It is found that although turbulence is pre-existing, magnetic fields still restructure themselves to shape many X-points with evident mean inflow/outflow as well as the hierarchically generated magnetic flux ropes (plasmoids in 2D) with twist field lines. Moreover, the turbulence facilitates magnetic reconnections, and makes the normalized global reconnection rate reach ∼ 0.02 − 0.1, corresponding to turbulence level from very low to high and magnetic energy release from feeble to violent. The rate is nearly independent on the Lundquist number, and thus the fast turbulent reconnection occurs. A stochastic separation of the reconnected magnetic field lines with large opening angles follows a super-diffusion, indicating the broadening of outflow regions owing to the turbulence. These findings manifest that with the high Lundquist numbers (S ≥ 10^4), the 3D reconnection is turbulent and fast.</p>


2009 ◽  
Vol 5 (S264) ◽  
pp. 257-266 ◽  
Author(s):  
Cristina H. Mandrini

AbstractFree energy stored in the magnetic field is the source that powers solar and stellar activity at all temporal and spatial scales. The energy released during transient atmospheric events is contained in current-carrying magnetic fields that have emerged twisted and may be further stressed via motions in the lower atmospheric layers (i.e. loop-footpoint motions). Magnetic reconnection is thought to be the mechanism through which the stored magnetic energy is transformed into kinetic energy of accelerated particles and mass flows, and radiative energy along the whole electromagnetic spectrum. This mechanism works efficiently at scale lengths much below the spatial resolution of even the highest resolution solar instruments; however, it may imply a large-scale restructuring of the magnetic field inferred indirectly from the combined analysis of observations and models of the magnetic field topology. The aftermath of magnetic energy release includes events ranging from nanoflares, which are below our detection limit, to powerful flares, which may be accompanied by the ejection of large amounts of plasma and magnetic field (so called coronal mass ejections, CMEs), depending on the amount of total available free magnetic energy, the magnetic flux density distribution, the magnetic field configuration, etc. We describe key observational signatures of flares and CMEs on the Sun, their magnetic field topology, and discuss how the combined analysis of solar and interplanetary observations can be used to constrain the flare/CME ejection mechanism.


1989 ◽  
Vol 104 (2) ◽  
pp. 293-296
Author(s):  
James Chen

AbstractWe discuss a mechanism whereby a current loop embedded in plasmas such as the solar and stellar coronae can dissipate magnetic energy without resistive effects or reconnection. This mechanism arises from the motion of magnetic/current structures driven by “toroidal forces”. Using a simple model loop, we show that it can exhibit a wide range of motion with correspondingly wide range of magnetic energy dissipation rates. For example, a loop with ~20G can attain expansion velocities of ~1200km s–1 under solar coronal conditions, dissipating ~1032erg in a few tens of minutes.


Sign in / Sign up

Export Citation Format

Share Document