scholarly journals HMI observations of two types of ephemeral regions

2013 ◽  
Vol 8 (S300) ◽  
pp. 470-472
Author(s):  
Shuhong Yang ◽  
Jun Zhang ◽  
Yang Liu

AbstractUsing the magnetograms observed with the Helioseismic and Magnetic Imager, we statistically study the ephemeral regions (ERs) of the Sun. we notice that the areas with locations around S15° and N25° have larger ER number density, implying that the generation of ERs may be affected by the large-scale background fields from dispersed active regions. According to their evolution, the ERs can be classified into two types, i.e., normal ERs (2798 ones) and self-canceled ERs (190 ones). Submergence of initial magnetic flux loops connecting the opposite dipolar polarities may lead to the self-cancellation.

Author(s):  
V. Archontis ◽  
P. Syntelis

A plethora of solar dynamic events, such as the formation of active regions, the emission of jets and the occurrence of eruptions is often associated with the emergence of magnetic flux from the interior of the Sun to the surface and above. Here, we present a short review on the onset, driving and/or triggering of such events by magnetic flux emergence. We briefly describe some key observational examples, theoretical aspects and numerical simulations, towards revealing the mechanisms that govern solar dynamics and activity related to flux emergence. We show that the combination of important physical processes like shearing and reconnection of magnetic fieldlines in emerging flux regions or at their vicinity can power some of the most dynamic phenomena in the Sun on various temporal and spatial scales. Based on previous and recent observational and numerical studies, we highlight that, in most cases, none of these processes alone can drive and also trigger explosive phenomena releasing considerable amount of energy towards the outer solar atmosphere and space, such as flares, jets and large-scale eruptions (e.g. coronal mass ejections). In addition, one has to take into account the physical properties of the emerging field (e.g. strength, amount of flux, relative orientation to neighbouring and pre-existing magnetic fields, etc.) in order to better understand the exact role of magnetic flux emergence on the onset of solar dynamic events. This article is part of the theme issue ‘Solar eruptions and their space weather impact’.


1985 ◽  
Vol 38 (6) ◽  
pp. 999 ◽  
Author(s):  
CR DeVore ◽  
NR Sheeley Jr ◽  
JP Boris ◽  
TR Young Jr ◽  
KL Harvey

We have solved numerically a transport equation which describes the evolution of the large-scale magnetic field of the Sun. Data derived from solar magnetic observations are used to initialize the computations and to account for the emergence of new magnetic flux during the sunspot cycle. Our objective is to assess the ability of the model to reproduce the observed evolution of the field patterns. We discuss recent results from simulations of individual active regions over a few solar rotations and of the magnetic field of the Sun over sunspot cycle 21.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2014 ◽  
Vol 10 (S305) ◽  
pp. 86-91 ◽  
Author(s):  
Mikhail L. Demidov ◽  
Renat M. Veretsky ◽  
Alexander V. Kiselev

AbstractOn the agenda of modern astrophysics is the exploration of not only disk-integrated stellar magnetic fields but surface mapping of them. However, it is hardly possible to expect that spatial resolution better than some dozens or hundreds pixels over stellar disk will be achieved for this goal in the foreseeable future. Among other reasons this fact makes very important observations of the average and large-scale magnetic fields of the Sun, which can be naturally used for testing polarimetric measurements on other stars, especially on solar-type stars. In this study we explore different aspects of observations of solar magnetic fields (SMF) with low spatial resolution, including Sun-as-a-star observations, which are characterized by extremely low magnetic flux densities. Comparison of disk-integrated and spatially resolved Stokes observations of the Sun allow us to demonstrate how Stokes V profiles depend on the distribution of large-scale magnetic fields in the disk center. It is shown that center-to-limb variations of magnetic strength ratios (MSR) and area asymetries, most likely could be interpreted as the manifestation of kG magnetic flux tubes. We have made cross-calibration of the full-disk magnetograms obtained by space-borned SDO/HMI and by the ground-based STOP telescope, and pretty good agreement is found. Finally, the absence of significant systematic time variations of MSRs with solar cycle is demonstrated.


2020 ◽  
Vol 639 ◽  
pp. A44
Author(s):  
Soumitra Hazra ◽  
Gopal Sardar ◽  
Partha Chowdhury

Context. Large-scale solar eruptions significantly affect space weather and damage space-based human infrastructures. It is necessary to predict large-scale solar eruptions; it will enable us to protect the vulnerable infrastructures of our modern society. Aims. We investigate the difference between flaring and nonflaring active regions. We also investigate whether it is possible to forecast a solar flare. Methods. We used photospheric vector magnetogram data from the Solar Dynamic Observatory’s Helioseismic Magnetic Imager to study the time evolution of photospheric magnetic parameters on the solar surface. We built a database of flaring and nonflaring active regions observed on the solar surface from 2010 to 2017. We trained a machine-learning algorithm with the time evolution of these active region parameters. Finally, we estimated the performance obtained from the machine-learning algorithm. Results. The strength of some magnetic parameters such as the total unsigned magnetic flux, the total unsigned magnetic helicity, the total unsigned vertical current, and the total photospheric magnetic energy density in flaring active regions are much higher than those of the non-flaring regions. These magnetic parameters in a flaring active region evolve fast and are complex. We are able to obtain a good forecasting capability with a relatively high value of true skill statistic. We also find that time evolution of the total unsigned magnetic helicity and the total unsigned magnetic flux provides a very high ability of distinguishing flaring and nonflaring active regions. Conclusions. We can distinguish a flaring active region from a nonflaring region with good accuracy. We confirm that there is no single common parameter that can distinguish all flaring active regions from the nonflaring regions. However, the time evolution of the top two magnetic parameters, the total unsigned magnetic flux and the total unsigned magnetic helicity, have a very high distinguishing capability.


1979 ◽  
Vol 32 (6) ◽  
pp. 671 ◽  
Author(s):  
JH Piddington

Solar ephemeral active regions may provide a larger amount of emerging magnetic flux than the active regions themselves, and the origin and disposal of this flux pose problems. The related X-ray bright points are a major feature of coronal dynamics, and the two phenomena may entail a revision of our ideas of the activity cycle. A new large-scale subsurface magnetic field system has been suggested, but it is shown that such a system is neither plausible nor necessary. The emerging magnetic bipoles merely represent loops in pre-existing vertical flux tubes which are parts of active regions or the remnants of active regions. These loops result from the kink (or helical) instability in a twisted flux tube. Their observed properties are explained in terms of the flux-rope theory of solar fields. The model is extended to some dynamical effects in emerging loops. Further observations of ephemeral active regions may provide important tests between the traditional and flux-rope theories of solar magnetic fields.


Author(s):  
Robert Cameron

The solar dynamo is the action of flows inside the Sun to maintain its magnetic field against Ohmic decay. On small scales the magnetic field is seen at the solar surface as a ubiquitous “salt-and-pepper” disorganized field that may be generated directly by the turbulent convection. On large scales, the magnetic field is remarkably organized, with an 11-year activity cycle. During each cycle the field emerging in each hemisphere has a specific East–West alignment (known as Hale’s law) that alternates from cycle to cycle, and a statistical tendency for a North-South alignment (Joy’s law). The polar fields reverse sign during the period of maximum activity of each cycle. The relevant flows for the large-scale dynamo are those of convection, the bulk rotation of the Sun, and motions driven by magnetic fields, as well as flows produced by the interaction of these. Particularly important are the Sun’s large-scale differential rotation (for example, the equator rotates faster than the poles), and small-scale helical motions resulting from the Coriolis force acting on convective motions or on the motions associated with buoyantly rising magnetic flux. These two types of motions result in a magnetic cycle. In one phase of the cycle, differential rotation winds up a poloidal magnetic field to produce a toroidal field. Subsequently, helical motions are thought to bend the toroidal field to create new poloidal magnetic flux that reverses and replaces the poloidal field that was present at the start of the cycle. It is now clear that both small- and large-scale dynamo action are in principle possible, and the challenge is to understand which combination of flows and driving mechanisms are responsible for the time-dependent magnetic fields seen on the Sun.


1990 ◽  
Vol 142 ◽  
pp. 523-524
Author(s):  
S. M. White ◽  
M. R. Kundu ◽  
N. Gopalswamy ◽  
E. J. Schmahl

During September 1988 (International Solar Month) we observed the Sun with the Very Large Array on 4 days in the period Sep. 11-17. The VLA was in its most compact configuration, which is ideal for studying large-scale coronal structures. Here we summarize some preliminary results of the observations at 0.333 and 1.5 GHz. Despite the presence of numerous active regions the Sun was actually very quiet, with no flares during our observing, and this allowed us to make high-dynamic-range maps.


1968 ◽  
Vol 35 ◽  
pp. 390-394
Author(s):  
John M. Wilcox ◽  
Norman F. Ness ◽  
Kenneth H. Schatten

The relation of solar active regions to the large-scale sector structure of the interplanetary field is discussed. In the winter of 1963–64 (observed by the satellite IMP-1) the plage density was greatest in the leading portion of the sectors and lesser in the trailing portion of the sectors. The boundaries of the sectors (places at which the direction of the interplanetary magnetic field changed from toward the Sun to away from the Sun, or vice versa) were remarkably free of plages. The very fact that since the first observations in 1962 the average interplanetary field has almost always had the property of being either toward the Sun or away from the Sun (along the Archimedean spiral angle) continuously for several days must be considered in the discussion of large-scale evolution of active regions. Using the observed interplanetary magnetic field at 1 AU and a set of reasonable assumptions the magnetic configuration in the ecliptic from 0·4 AU to 1·2 AU has been reconstructed. In at least one case a pattern emerges which appears to be related to the evolution of an active region from an early stage in which the magnetic lines closely couple the preceding and following halves of the region to a later stage in which the two halves of the region are more widely separated.


Sign in / Sign up

Export Citation Format

Share Document