scholarly journals The origin and pulsations of extreme helium stars

2013 ◽  
Vol 9 (S301) ◽  
pp. 297-304
Author(s):  
C. Simon Jeffery

AbstractStars consume hydrogen in their interiors but, generally speaking, their surfaces continue to contain some 70% hydrogen (by mass) throughout their lives. Nevertheless, many types of star can be found with hydrogen-deficient surfaces, in some cases with as little as one hydrogen atom in 10 000. Amongst these, the luminous B- and A-type extreme helium stars are genuinely rare; only ~15 are known within a very substantial volume of the Galaxy.Evidence from surface composition suggests a connection to the cooler R CrB variables and some of the hotter helium-rich subdwarf O stars. Arguments currently favour an origin in the merger of two white dwarfs; thus there are also connections with AM CVn variables and Type Ia supernovae. Pulsations in many extreme helium stars provide an opportune window into their interiors. These pulsations have unusual properties, some being “strange” modes, and others being driven by Z-bump opacities. They have the potential to deliver distance-independent masses and to provide a unique view of pulsation physics.We review the evolutionary origin and pulsations of these stars, and introduce recent progress and continuing challenges.

1994 ◽  
Vol 147 ◽  
pp. 186-213
Author(s):  
J. Isern ◽  
R. Canal

AbstractIn this paper we review the behavior of growing stellar degenerate cores. It is shown that ONeMg white dwarfs and cold CO white dwarfs can collapse to form a neutron star. This collapse is completely silent since the total amount of radioactive elements that are expelled is very small and a burst of γ-rays is never produced. In the case of an explosion (always carbonoxygen cores), the outcome fits quite well the observed properties of Type Ia supernovae. Nevertheless, the light curves and the velocities measured at maximum are very homogeneous and the diversity introduced by igniting at different densities is not enough to account for the most extreme cases observed. It is also shown that a promising way out of this problem could be the He-induced detonation of white dwarfs with different masses. Finally, we outline that the location of the border line which separetes explosion from collapse strongly depends on the input physics adopted.


2018 ◽  
Vol 865 (1) ◽  
pp. 15 ◽  
Author(s):  
Ken J. Shen ◽  
Douglas Boubert ◽  
Boris T. Gänsicke ◽  
Saurabh W. Jha ◽  
Jennifer E. Andrews ◽  
...  

2021 ◽  
Vol 919 (2) ◽  
pp. 126
Author(s):  
Samuel J. Boos ◽  
Dean M. Townsley ◽  
Ken J. Shen ◽  
Spencer Caldwell ◽  
Broxton J. Miles

2004 ◽  
Vol 194 ◽  
pp. 111-112
Author(s):  
Lilia Ferrario

AbstractI argue that the observational evidence for white dwarf-white dwarf mergers supports the view that they give rise to ultra-massive white dwarfs or neutron stars through accretion induced collapse. The implications for the progenitors of Type Ia SNe are discussed.


2020 ◽  
Vol 497 (2) ◽  
pp. 1895-1903 ◽  
Author(s):  
E C Wilson ◽  
J Nordhaus

ABSTRACT The formation channels and predicted populations of double white dwarfs (DWDs) are important because a subset will evolve to be gravitational-wave sources and/or progenitors of Type Ia supernovae. Given the observed population of short-period DWDs, we calculate the outcomes of common envelope (CE) evolution when convective effects are included. For each observed white dwarf (WD) in a DWD system, we identify all progenitor stars with an equivalent proto-WD core mass from a comprehensive suite of stellar evolution models. With the second observed WD as the companion, we calculate the conditions under which convection can accommodate the energy released as the orbit decays, including (if necessary) how much the envelope must spin-up during the CE phase. The predicted post-CE final separations closely track the observed DWD orbital parameter space, further strengthening the view that convection is a key ingredient in CE evolution.


2016 ◽  
Vol 26 (1) ◽  
Author(s):  
Dongdong Liu ◽  
Bo Wang ◽  
Chengyuan Wu

AbstractRecent studies suggested that at least some of the observed SNe Ia originate from the double-degenerate model, which involves the merging of double carbon-oxygen white dwarfs (CO WDs). However, the delay time distributions predicted by previous theoretical studies are inconsistent with the observed SNe Ia at the early epoches of < 1 Gyr and old epoches of > 8 Gyr. Previous studies suggested that the CO WD+He subgiant channel has a significant contribution to the formation of massive double CO WDs, the merging ofwhich may produce SNe Ia. In the presentwork, we added this channel into the double-degenerate model to investigate its influence on the delay time distributions of SNe Ia. We found that the delay time distributions would match better with the observed SNe Ia when the CO WD+He subgiant channel is included in the double-degenerate model.


2010 ◽  
Vol 10 (9) ◽  
pp. 927-934 ◽  
Author(s):  
Xiang-Cun Meng ◽  
Wu-Ming Yang ◽  
Zhong-Mu Li

2021 ◽  
Author(s):  
Thibault Merle ◽  
Adrian Hamers ◽  
Sophie Van Eck ◽  
Alain Jorissen ◽  
Mathieu Van der Swaelmen ◽  
...  

Abstract Stars often form in multiple systems and may follow a complex evolution involving mass transfer and collisions, leading to mergers that are possible progenitors of Type Ia supernovae (SNe) [1, 2]. The progenitors of such explosions are still highly debated [3]. While binaries have received much attention so far, higher-order stellar systems show a wide variety of interactions especially in tight systems, like long-term gravitational effects playing a key role in triple (where they are called von Zeipel-Lidov-Kozai , [4, 5], hereafter ZLK, oscillations) and quadruple systems. Here we report on the properties of the first spectroscopic quadruple (SB4) found within a star cluster: the 2+2 hierarchical system HD 74438 [6]. Its membership in the open cluster IC 2391 makes it the youngest (43 My) SB4 discovered so far. The eccentricity of the 6 y outer period is 0.46 and the two inner orbits, with periods of 20.5 d and 4.4 d, and eccentricities of 0.36 and 0.15, are not coplanar. Using an innovative combination of ground-based high resolution spectroscopy [7, 8, 9, 10] and Gaia/Hipparcos astrometry [11, 12, 13, 14], we show that this system is undergoing secular interaction that likely pumped the eccentricity of one of the inner orbit higher than expected for the spectral types of its components. We compute the future evolution of HD 74438 by considering gravitational dynamics, stellar evolution, and binary interactions [15], and show that this system is an excellent candidate progenitor of sub-Chandrasekhar Type Ia supernova through white dwarf (WD) mergers. This specific type of SNIa better accounts for the chemical evolution of iron-peak elements in the Galaxy [16].


2020 ◽  
Vol 638 ◽  
pp. A131 ◽  
Author(s):  
R. Napiwotzki ◽  
C. A. Karl ◽  
T. Lisker ◽  
S. Catalán ◽  
H. Drechsel ◽  
...  

Close double degenerate binaries are one of the favoured progenitor channels for type Ia supernovae, but it is unclear how many suitable systems there are in the Galaxy. We report results of a large radial velocity survey for double degenerate (DD) binaries using the UVES spectrograph at the ESO VLT (ESO SN Ia Progenitor surveY – SPY). Exposures taken at different epochs are checked for radial velocity shifts indicating close binary systems. We observed 689 targets classified as DA white dwarfs (displaying hydrogen-rich atmospheres), of which 46 were found to possess a cool companion. We measured radial velocities (RV) of the remaining 643 DA white dwarfs. We managed to secure observations at two or more epochs for 625 targets, supplemented by eleven objects meeting our selection criteria from literature. The data reduction and analysis methods applied to the survey data are described in detail. The sample contains 39 double degenerate binaries, only four of which were previously known. Twenty are double-lined systems, in which features from both components are visible, the other 19 are single-lined binaries. We provide absolute RVs transformed to the heliocentric system suitable for kinematic studies. Our sample is large enough to sub-divide by mass: 16 out of 44 low mass targets (≤0.45 M⊙) are detected as DDs, while just 23 of the remaining 567 targets with multiple spectra and mass > 0.45 M⊙ are double. The detected fraction amongst the low mass objects (36.4 ± 7.3%) is significantly higher than for the higher-mass, carbon-oxygen core dominated part of the sample (3.9 ± 0.8%), but it is much lower than expected from the detection efficiency for companion masses of 0.05 M⊙ or higher and a 100% binary fraction. This suggests either companion stars of with a mass below 0.05 M⊙ or some of the low mass white dwarfs are single.


Sign in / Sign up

Export Citation Format

Share Document