scholarly journals Multiple accretion events as a trigger for Sagittarius A* activity

2013 ◽  
Vol 9 (S303) ◽  
pp. 320-321
Author(s):  
D. Kunneriath ◽  
B. Czerny ◽  
V. Karas ◽  
T. K. Das

AbstractThe Galactic center supermassive black hole is surrounded by orbiting clouds of gas. These clumps of gas may collide with each other, losing angular momentum and plunging towards the center. Observations of X-ray reflection from molecular clouds surrounding the Galactic center show evidence for enhanced activity of Sagittarius A* during the past few hundred years. These observations enable us to place constraints on the nature of past accretion events responsible for this enhanced activity. We model the source intrinsic luminosity of Sgr A* using multiple accretion events occurring at various moments in time, characterized by a range of angular momentum We also applied our scheme to the case of G2 cloud in the Galactic center.

2012 ◽  
Vol 8 (S290) ◽  
pp. 199-200 ◽  
Author(s):  
Bozena Czerny ◽  
Vladimír Karas ◽  
Devaky Kunneriath ◽  
Tapas K. Das

AbstractThe question of the origin of the gas supplying the accretion process is pertinent especially in the context of enhanced activity of Galactic Center during the past few hundred years, seen now as echo from the surrounding molecular clouds, and the currently observed new cloud approaching Sgr A*. We discuss the so-called Galactic Center mini-spiral as a possible source of material feeding the supermassive black hole on a 0.1 parsec scale. The collisions between individual clumps reduce their angular momentum. and set some of the clumps on a plunging trajectory.We conclude that the amount of material contained in the mini-spiral is sufficient to sustain the luminosity of Sgr A* at the required level. The accretion episodes of relatively dense gas from the mini-spiral passing through a transient ring mode at ~ 104 Rg provide a viable scenario for the bright phase of Galactic Center.


2016 ◽  
Vol 11 (S322) ◽  
pp. 253-256
Author(s):  
Maïca Clavel ◽  
Régis Terrier ◽  
Andrea Goldwurm ◽  
Mark R. Morris ◽  
Gabriele Ponti

AbstractThe history of supermassive black holes’ activity can be partly constrained by monitoring the diffuse X-ray emission possibly created by the echoes of past events propagating through the molecular clouds of their respective environments. In particular, using this method we have demonstrated that our Galaxy’s supermassive black hole, Sgr A⋆, has experienced multiple periods of higher activity in the last centuries, likely due to several short but very energetic events, and we now investigate the possibility of studying the past activity of other supermassive black holes by applying the same method to M31⋆. We set strong constraints on putative phase transitions of this more distant galactic nucleus but the existence of short events such as the ones observed in the Galactic center cannot be assessed with the upper limits we derived.


2018 ◽  
Vol 610 ◽  
pp. A34 ◽  
Author(s):  
D. Chuard ◽  
R. Terrier ◽  
A. Goldwurm ◽  
M. Clavel ◽  
S. Soldi ◽  
...  

Context. For a decade now, evidence has accumulated that giant molecular clouds located within the central molecular zone of our Galaxy reflect X-rays coming from past outbursts of the Galactic supermassive black hole. However, the number of illuminating events as well as their ages and durations are still unresolved questions. Aims. We aim to reconstruct parts of the history of the supermassive black hole Sgr A★ by studying this reflection phenomenon in the molecular complex Sgr C and by determining the line-of-sight positions of its main bright substructures. Methods. Using observations made with the X-ray observatories XMM-Newton and Chandra and between 2000 and 2014, we investigated the variability of the reflected emission, which consists of a Fe Kα line at 6.4 keV and a Compton continuum. We carried out an imaging and a spectral analysis. We also used a Monte Carlo model of the reflected spectra to constrain the line-of-sight positions of the brightest clumps, and hence to assign an approximate date to the associated illuminating events. Results. We show that the Fe Kα emission from Sgr C exhibits significant variability in both space and time, which confirms its reflection origin. The most likely illuminating source is Sgr A★. On the one hand, we report two distinct variability timescales, as one clump undergoes a sudden rise and fall in about 2005, while two others vary smoothly throughout the whole 2000–2014 period. On the other hand, by fitting the Monte Carlo model to the data, we are able to place tight constraints on the 3D positions of the clumps. These two independent approaches provide a consistent picture of the past activity of Sgr A★, since the two slowly varying clumps are located on the same wavefront, while the third (rapidly varying) clump corresponds to a different wavefront, that is, to a different illuminating event. Conclusions. This work shows that Sgr A★ experienced at least two powerful outbursts in the past 300 yrs, and for the first time, we provide an estimation of their age. Extending this approach to other molecular complexes, such as Sgr A, will allow this two-event scenario to be tested further.


2013 ◽  
Author(s):  
Maica Clavel ◽  
Regis Terrier ◽  
Andrea Goldwurm ◽  
Mark Morris ◽  
G. Ponti ◽  
...  

2013 ◽  
Vol 9 (S303) ◽  
pp. 333-343 ◽  
Author(s):  
G. Ponti ◽  
M. R. Morris ◽  
M. Clavel ◽  
R. Terrier ◽  
A. Goldwurm ◽  
...  

AbstractRecent X-ray emission events in the Galactic center would be expected to generate an X-ray reflection response within the surrounding clouds of the central molecular zone, in the Galactic disk and even, if powerful enough, in clouds outside our Galaxy. We review here the current constraints on Sgr A*'s past activity obtained through this method, with particular emphasis on the strong evidence that has been gathered for multiple X-ray flashes during the past few hundred years.


2013 ◽  
Vol 9 (S303) ◽  
pp. 344-348
Author(s):  
M. Clavel ◽  
R. Terrier ◽  
A. Goldwurm ◽  
M. R. Morris ◽  
G. Ponti ◽  
...  

AbstractThe supermassive black hole at the Galactic center, Sagittarius A* has experienced periods of higher activity in the past. The reflection of these past outbursts is observed in the molecular material surrounding the black hole but reconstructing its precise lightcurve is difficult since the distribution of the clouds along the line of sight is poorly constrained.Using Chandra high-resolution data collected from 1999 to 2011 we studied both the 6.4 keV and the 4–8 keV emission of the region located between Sgr A* and the Radio arc, characterizing its variations down to 15″ angular scale and 1-year time scale. The emission from the molecular clouds in the region varies significantly, showing either a 2-year peaked emission or 10-year linear variations. This is the first time that such fast variations are measured. Based on the cloud parameters, we conclude that these two behaviors are likely due to two distinct past outbursts of Sgr A* during which its luminosity rose to at least 1039 erg s−1.


1996 ◽  
Vol 171 ◽  
pp. 369-369
Author(s):  
W.J. Duschl ◽  
S. von Linden ◽  
T. Walter ◽  
M. Wittkowski

Gas and dust in the inner region of the Galaxy are distributed in a flat, disklike structure. We model the dynamics of this material in the framework of an accretion disk approach, and thus determine the efficiency of the radial transport of mass and angular momentum in the inner ∼ 200 pc of the Galactic Plane. Moreover, this allows us to establish the location (coordinates: galactic longitude l and depth normal to the celestial sphere) of molecular clouds from the observed positions (l) and radial velocities (currently, we neglect details of the vertical structure). Ultimately this will yield a map of the distribution of molecular clouds about Sgr A∗.


2016 ◽  
Vol 11 (S322) ◽  
pp. 214-217
Author(s):  
Yutaka Fujita ◽  
Shigeo S. Kimura ◽  
Kohta Murase

AbstractIt has been indicated that low-luminosity active galactic nuclei (LLAGNs) are accelerating high-energy cosmic-ray (CR) protons in their radiatively inefficient accretion flows (RIAFs). If this is the case, Sagittarius A* (Sgr A*) should also be generating CR protons, because Sgr A* is a LLAGN. Based on this scenario, we calculate a production rate of CR protons in Sgr A* and their diffusion in the central molecular zone (CMZ) around Sgr A*. The CR protons diffusing in the CMZ create gamma-rays through pp interaction. We show that the gamma-ray luminosity and spectrum are consistent with observations if Sgr A* was active in the past.


2006 ◽  
Vol 2 (S238) ◽  
pp. 173-180 ◽  
Author(s):  
Reinhard Genzel ◽  
Vladimír Karas

AbstractIn the past decade high resolution measurements in the infrared employing adaptive optics imaging on 10m telescopes have allowed determining the three dimensional orbits stars within ten light hours of the compact radio source at the center of the Milky Way. These observations show the presence of a three million solar mass black hole in Sagittarius A* beyond any reasonable doubt. The Galactic Center thus constitutes the best astrophysical evidence for the existence of black holes which have long been postulated, and is also an ideal ‘lab’ for studying the physics in the vicinity of such an object. Remarkably, young massive stars are present there and probably have formed in the innermost stellar cusp. Variable infrared and X-ray emission from Sagittarius A* are a new probe of the physical processes and space-time curvature just outside the event horizon.


Sign in / Sign up

Export Citation Format

Share Document