scholarly journals OCAAT: automated analysis of star cluster colour-magnitude diagrams for gauging the local distance scale

2014 ◽  
Vol 10 (S306) ◽  
pp. 298-300
Author(s):  
Gabriel I. Perren ◽  
Ruben A. Vázquez ◽  
Andrés E. Piatti ◽  
André Moitinho

AbstractStar clusters are among the fundamental astrophysical objects used in setting the local distance scale. Despite its crucial importance, the accurate determination of the distances to the Magellanic Clouds (SMC/LMC) remains a fuzzy step in the cosmological distance ladder. The exquisite astrometry of the recently launched ESA Gaia mission is expected to deliver extremely accurate statistical parallaxes, and thus distances, to the SMC/LMC. However, an independent SMC/LMC distance determination via main sequence fitting of star clusters provides an important validation check point for the Gaia distances. This has been a valuable lesson learnt from the famous Hipparcos Pleiades distance discrepancy problem. Current observations will allow hundreds of LMC/SMC clusters to be analyzed in this light.Today, the most common approach for star cluster main sequence fitting is still by eye. The process is intrinsically subjective and affected by large uncertainties, especially when applied to poorly populated clusters. It is also, clearly, not an efficient route for addressing the analysis of hundreds, or thousands, of star clusters. These concerns, together with a new attitude towards advanced statistical techniques in astronomy and the availability of powerful computers, have led to the emergence of software packages designed for analyzing star cluster photometry. With a few rare exceptions, those packages are not publicly available.Here we present OCAAT (Open Cluster Automated Analysis Tool), a suite of publicly available open source tools that fully automatises cluster isochrone fitting. The code will be applied to a large set of hundreds of open clusters observed in the Washington system, located in the Milky Way and the Magellanic Clouds. This will allow us to generate an objective and homogeneous catalog of distances up to ~ 60 kpc along with its associated reddening, ages and metallicities and uncertainty estimates.

2008 ◽  
Vol 4 (S256) ◽  
pp. 305-310
Author(s):  
A. D. Mackey ◽  
P. Broby Nielsen ◽  
A. M. N. Ferguson ◽  
J. C. Richardson

AbstractThe recent discovery of multiple stellar populations in massive Galactic globular clusters poses a serious challenge for models of star cluster formation and evolution. A new angle on this problem is being provided by rich intermediate-age clusters in the Magellanic Clouds. In this contribution we describe the discovery of three such LMC clusters with peculiar main-sequence turn-off morphologies. The simplest interpretation of our observations is that each of these three clusters is comprised of two or more stellar populations spanning an age interval of ~300 Myr. Surprisingly, such features may not be unusual in this type of cluster.


Author(s):  
R. A. Schommer ◽  
E. W. Olszewski ◽  
M. A. Aaronson

1991 ◽  
Vol 148 ◽  
pp. 207-208
Author(s):  
Myung Gyoon Lee

Using U BV CCD photometry, the stellar content of HII regions and young star clusters in the Magellanic Clouds has been studied: (1) the reddenings have been determined, and ages of OB associations and young star clusters have been measured; (2) the stellar initial mass functions have been determined by using the main-sequence luminosity functions; and (3) U BV CCD surface photometry of nine young star clusters has been obtained and their structural properties investigated.


2019 ◽  
Vol 628 ◽  
pp. A45 ◽  
Author(s):  
F. Gran ◽  
M. Zoccali ◽  
R. Contreras Ramos ◽  
E. Valenti ◽  
A. Rojas-Arriagada ◽  
...  

Context. Thanks to the recent wide-area photometric surveys, the number of star cluster candidates have risen exponentially in the last few years. Most detections, however, are based only on the presence of an overdensity of stars in a given region or an overdensity of variable stars, regardless of their distance. As candidates, their detection has not been dynamically confirmed. Therefore, it is currently unknown how many and which of the published candidates are true clusters and which are chance alignments. Aims. We present a method to detect and confirm star clusters based on the spatial distribution, coherence in motion, and appearance on the color-magnitude diagram. We explain and apply this approach to one new star cluster and several candidate star clusters published in the literature. Methods. The presented method is based on data from the second data release of Gaia complemented with data from the VISTA Variables in the Vía Láctea survey for the innermost bulge regions. This method consists of a nearest neighbors algorithm applied simultaneously over spatial coordinates, star color, and proper motions to detect groups of stars that are close in the sky, move coherently, and define narrow sequences in the color-magnitude diagram, such as a young main sequence or a red giant branch. Results. When tested in the bulge area (−10 <  ℓ (deg) <  +10; −10 <  b (deg) <  +10) the method successfully recovered several known young and old star clusters. We report in this work the detection of one new, likely old star cluster, while deferring the others to a forthcoming paper. Additionally, the code has been applied to the position of 93 candidate star clusters published in the literature. As a result, only two of these clusters are confirmed as coherently moving groups of stars at their nominal positions.


2007 ◽  
Vol 3 (S246) ◽  
pp. 36-40
Author(s):  
H. Baumgardt ◽  
P. Kroupa

AbstractWe present new results on the dynamical evolution and dissolution of star clusters due to residual gas expulsion and the effect this has on the mass function and other properties of star cluster systems. To this end, we have carried out a large set of N-body simulations, varying the star formation efficiency, gas expulsion time scale and strength of the external tidal field, obtaining a three-dimensional grid of models which can be used to predict the evolution of individual star clusters or whole star cluster systems by interpolating between our runs. When applied to the Milky Way globular cluster system, we find that gas expulsion is the main dissolution mechanism for star clusters, destroying about 80% of all clusters within a few 10s of Myers. Together with later dynamical evolution, it seems possible to turn an initial power-law mass function into a log-normal one with properties similar to what has been observed for the Milky Way globular clusters.


1993 ◽  
Vol 155 ◽  
pp. 478-478
Author(s):  
E. Vassiliadis ◽  
P.R. Wood

Stars of mass 1–5 MM⊙ and composition Y=0.25 and Z=0.016 have been evolved from the main-sequence to the white dwarf stage with an empirical mass loss formula based on observations of mass loss rates in AGB stars. This mass loss formula (Wood 1990) causes the mass loss rate to rise exponentially with pulsation period on the AGB until superwind rates are achieved, where these rates correspond to radiation pressure driven mass loss rates. The formula was designed to reproduce the maximum periods observed for optically-visible LPVs and it also reproduces extremely well the maximum AGB luminosities observed in star clusters in the Magellanic Clouds (see Vassiliadis and Wood 1992 for details).


1996 ◽  
Vol 174 ◽  
pp. 335-336 ◽  
Author(s):  
M. Kontizas ◽  
D. Gouliermis ◽  
E. Kontizas

The way star cluster systems in galaxies are forming and survive seem to depend on the relation of the central density ρ (at half mass radius) of each cluster with its galactocentric distance Rgc. It is found that this relation takes the form of: The cluster systems of our Galaxy and of the two Magellanic Clouds, have been investigated. We have taken the cluster system of the conventional globulars of our Galaxy whereas the young and old systems of clusters in the LMC and SMC were treated separately. The radial distributions of central densities and half mass radii were found for all these systems showing a definite trend which depends on: (α) The total mass of the parent galaxy & (β) The age of the cluster system (young - old). It therefore appears that the total mass and/or the morphology of the parent galaxy plays a major role on the loci where clusters survive and form.


2014 ◽  
Vol 793 (2) ◽  
pp. 121 ◽  
Author(s):  
Matteo Correnti ◽  
Paul Goudfrooij ◽  
Jason S. Kalirai ◽  
Leo Girardi ◽  
Thomas H. Puzia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document