scholarly journals NEW CLUES TO THE CAUSE OF EXTENDED MAIN-SEQUENCE TURNOFFS IN INTERMEDIATE-AGE STAR CLUSTERS IN THE MAGELLANIC CLOUDS

2014 ◽  
Vol 793 (2) ◽  
pp. 121 ◽  
Author(s):  
Matteo Correnti ◽  
Paul Goudfrooij ◽  
Jason S. Kalirai ◽  
Leo Girardi ◽  
Thomas H. Puzia ◽  
...  
1991 ◽  
Vol 148 ◽  
pp. 207-208
Author(s):  
Myung Gyoon Lee

Using U BV CCD photometry, the stellar content of HII regions and young star clusters in the Magellanic Clouds has been studied: (1) the reddenings have been determined, and ages of OB associations and young star clusters have been measured; (2) the stellar initial mass functions have been determined by using the main-sequence luminosity functions; and (3) U BV CCD surface photometry of nine young star clusters has been obtained and their structural properties investigated.


2014 ◽  
Vol 10 (S306) ◽  
pp. 298-300
Author(s):  
Gabriel I. Perren ◽  
Ruben A. Vázquez ◽  
Andrés E. Piatti ◽  
André Moitinho

AbstractStar clusters are among the fundamental astrophysical objects used in setting the local distance scale. Despite its crucial importance, the accurate determination of the distances to the Magellanic Clouds (SMC/LMC) remains a fuzzy step in the cosmological distance ladder. The exquisite astrometry of the recently launched ESA Gaia mission is expected to deliver extremely accurate statistical parallaxes, and thus distances, to the SMC/LMC. However, an independent SMC/LMC distance determination via main sequence fitting of star clusters provides an important validation check point for the Gaia distances. This has been a valuable lesson learnt from the famous Hipparcos Pleiades distance discrepancy problem. Current observations will allow hundreds of LMC/SMC clusters to be analyzed in this light.Today, the most common approach for star cluster main sequence fitting is still by eye. The process is intrinsically subjective and affected by large uncertainties, especially when applied to poorly populated clusters. It is also, clearly, not an efficient route for addressing the analysis of hundreds, or thousands, of star clusters. These concerns, together with a new attitude towards advanced statistical techniques in astronomy and the availability of powerful computers, have led to the emergence of software packages designed for analyzing star cluster photometry. With a few rare exceptions, those packages are not publicly available.Here we present OCAAT (Open Cluster Automated Analysis Tool), a suite of publicly available open source tools that fully automatises cluster isochrone fitting. The code will be applied to a large set of hundreds of open clusters observed in the Washington system, located in the Milky Way and the Magellanic Clouds. This will allow us to generate an objective and homogeneous catalog of distances up to ~ 60 kpc along with its associated reddening, ages and metallicities and uncertainty estimates.


1993 ◽  
Vol 155 ◽  
pp. 478-478
Author(s):  
E. Vassiliadis ◽  
P.R. Wood

Stars of mass 1–5 MM⊙ and composition Y=0.25 and Z=0.016 have been evolved from the main-sequence to the white dwarf stage with an empirical mass loss formula based on observations of mass loss rates in AGB stars. This mass loss formula (Wood 1990) causes the mass loss rate to rise exponentially with pulsation period on the AGB until superwind rates are achieved, where these rates correspond to radiation pressure driven mass loss rates. The formula was designed to reproduce the maximum periods observed for optically-visible LPVs and it also reproduces extremely well the maximum AGB luminosities observed in star clusters in the Magellanic Clouds (see Vassiliadis and Wood 1992 for details).


2018 ◽  
Vol 864 (1) ◽  
pp. L3 ◽  
Author(s):  
Paul Goudfrooij ◽  
Léo Girardi ◽  
Andrea Bellini ◽  
Alessandro Bressan ◽  
Matteo Correnti ◽  
...  

2008 ◽  
Vol 4 (S256) ◽  
pp. 305-310
Author(s):  
A. D. Mackey ◽  
P. Broby Nielsen ◽  
A. M. N. Ferguson ◽  
J. C. Richardson

AbstractThe recent discovery of multiple stellar populations in massive Galactic globular clusters poses a serious challenge for models of star cluster formation and evolution. A new angle on this problem is being provided by rich intermediate-age clusters in the Magellanic Clouds. In this contribution we describe the discovery of three such LMC clusters with peculiar main-sequence turn-off morphologies. The simplest interpretation of our observations is that each of these three clusters is comprised of two or more stellar populations spanning an age interval of ~300 Myr. Surprisingly, such features may not be unusual in this type of cluster.


1998 ◽  
Vol 11 (1) ◽  
pp. 395-395
Author(s):  
S. Nishida ◽  
T. Tanabé ◽  
S. Matsumoto ◽  
T. Onaka ◽  
Y. Nakada ◽  
...  

A systematic near-infrared survey was made for globular clusters in the Magellanic Clouds. Two infrared stars were discovered in NGC419 (SMC) and NGC1783 (LMC). NGC419 and NGC1783 are well-studied rich globular clusters whose turn-off masses and ages are estimated MTO ~ 2.0 Mʘ and т ~1.2 Gyr for NGC419, and MT0 ~ 2.0 Mʘ and т ʘ 0.9 Gyr for NGC1783, respectively. The periods of the infrared light variations were determined to be 540 dfor NGC419IR1 and to be 480 d for NGC1783IR1, respectively. Comparison of the measurements with the period—if magnitude relation for carbon Miras in the LMC by Groenewegen and Whitelock(1996) revealed that the Kmagnitudes of the infrared stars were fainter by about 0.3 — 0.8 magnitude than those predicted by the P — K relation. This deviation can be explained if the infrared stars are surrounded by thick dust shells and are obscured even in the K band. The positions of NGC419IR1and NGC1783IR1 on the P — K diagram suggest that AGB stars with the main sequence masses of about 2 Mʘ start their heavy mass-loss when P ʘ 500 d.


1983 ◽  
Vol 6 ◽  
pp. 109-117 ◽  
Author(s):  
R.D. Cannon

In this review I shall concentrate mainly on globular star clusters in our Galaxy since these are the objects for which most work has been done recently, both observationally and theoretically. However, I shall also discuss briefly the oldest open clusters and clusters in the Magellanic Clouds. Little can be said about more distant cluster systems, since the only observations available are of integrated colours or spectra and these seem to be rather unreliable indicators of age. It is perhaps worth pointing out that the title may be slightly misleading; the problem is not so much to determine the ages of clusters of known abundances, as to obtain the best simultaneous solution for both age and composition, since some of the most important abundances (notably helium and oxygen) are virtually unobservable in little-evolved low mass stars.


Sign in / Sign up

Export Citation Format

Share Document