scholarly journals Evolved massive stars in W33 and in GMC G23.3 − 0.3

2015 ◽  
Vol 12 (S316) ◽  
pp. 167-168
Author(s):  
M. Messineo ◽  
J. S. Clark ◽  
D. F. Figer ◽  
K. M. Menten ◽  
R.-P. Kudritzki ◽  
...  

AbstractWe conducted infrared spectroscopic observations of bright stars in the direction of the molecular clouds W33 and GMC G23.3 − 0.3. We compared stellar spectro-photometric distances with parallactic distances to these regions, and we were able to assess the association of the detected massive stars with these molecular complexes. The spatial and temporal distributions of the detected stars enabled us to locate sources of ionizing radiation and to gather precise information on the star formation history of these clouds. The studied clouds present different distributions of massive stars.

2013 ◽  
Vol 9 (S303) ◽  
pp. 252-253
Author(s):  
Francisco Najarro ◽  
Diego de la Fuente ◽  
Tom R. Geballe ◽  
Don F. Figer

AbstractThe Galactic center (GC) region hosts three of the most massive resolved young clusters in the Local Group and constitutes a test bed for studying the star formation history of the region and inferring the possibility of a top-heavy scenario. Further, recent detection of a large number of apparently isolated massive stars within the inner 80 pc of the Galactic center has raised fundamental questions regarding massive star formation in a such a dense and harsh environment. Noting that most of the isolated massive stars have spectral analogs in the Quintuplet cluster, we have undertaken a combined analysis of the infrared spectra of both selected Quintuplet stars and the isolated objects using Gemini spectroscopy. We present preliminary results, aiming at α-elements versus iron abundances, stellar properties, ages and radial velocities which will differentiate the top-heavy and star-formation scenarios.


2019 ◽  
Vol 624 ◽  
pp. A63 ◽  
Author(s):  
A. Bik ◽  
Th. Henning ◽  
S.-W. Wu ◽  
M. Zhang ◽  
W. Brandner ◽  
...  

Context. The interplay between the formation of stars, stellar feedback and cloud properties strongly influences the star formation history of giant molecular clouds. The formation of massive stars leads to a variety of stellar clusters, ranging from low stellar density OB associations to dense, gravitationally bound starburst clusters. Aims. We aimed at identifying the massive stellar content and reconstructing the star formation history of the W51 giant molecular cloud. Methods. We performed near-infrared imaging and K-band spectroscopy of the massive stars in W51. We analysed the stellar populations using colour-magnitude and colour-colour diagrams and compared the properties of the spectroscopically identified stars with stellar evolution models. Results. We derive the ages of the different sub-clusters in W51 and, based on our spectroscopy derive an age for W51 of 3 Myr or less. The age of the P Cygni star LS1 and the presence of two still forming proto-clusters suggests that the star formation history of W51 is more complex than a single burst. Conclusions. We did not find evidence for triggered star formation and we concluded that the star formation in W51 is multi seeded. We finally concluded that W51 is an OB association where different sub-clusters form over a time span of at least 3–5 Myr.


1999 ◽  
Vol 118 (5) ◽  
pp. 2245-2261 ◽  
Author(s):  
Carme Gallart ◽  
Wendy L. Freedman ◽  
Antonio Aparicio ◽  
Giampaolo Bertelli ◽  
Cesare Chiosi

2020 ◽  
Vol 501 (2) ◽  
pp. 1803-1822
Author(s):  
Seunghwan Lim ◽  
Douglas Scott ◽  
Arif Babul ◽  
David J Barnes ◽  
Scott T Kay ◽  
...  

ABSTRACT As progenitors of the most massive objects, protoclusters are key to tracing the evolution and star formation history of the Universe, and are responsible for ${\gtrsim }\, 20$ per cent of the cosmic star formation at $z\, {\gt }\, 2$. Using a combination of state-of-the-art hydrodynamical simulations and empirical models, we show that current galaxy formation models do not produce enough star formation in protoclusters to match observations. We find that the star formation rates (SFRs) predicted from the models are an order of magnitude lower than what is seen in observations, despite the relatively good agreement found for their mass-accretion histories, specifically that they lie on an evolutionary path to become Coma-like clusters at $z\, {\simeq }\, 0$. Using a well-studied protocluster core at $z\, {=}\, 4.3$ as a test case, we find that star formation efficiency of protocluster galaxies is higher than predicted by the models. We show that a large part of the discrepancy can be attributed to a dependence of SFR on the numerical resolution of the simulations, with a roughly factor of 3 drop in SFR when the spatial resolution decreases by a factor of 4. We also present predictions up to $z\, {\simeq }\, 7$. Compared to lower redshifts, we find that centrals (the most massive member galaxies) are more distinct from the other galaxies, while protocluster galaxies are less distinct from field galaxies. All these results suggest that, as a rare and extreme population at high z, protoclusters can help constrain galaxy formation models tuned to match the average population at $z\, {\simeq }\, 0$.


2019 ◽  
Vol 15 (S359) ◽  
pp. 386-390
Author(s):  
Lucimara P. Martins

AbstractWith the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.


2017 ◽  
Vol 12 (S330) ◽  
pp. 148-151 ◽  
Author(s):  
Edouard J. Bernard

AbstractWe took advantage of the Gaia DR1 to combine TGAS parallaxes with Tycho-2 and APASS photometry to calculate the star formation history (SFH) of the solar neighbourhood within 250 pc using the colour-magnitude diagram fitting technique. We present the determination of the completeness within this volume, and compare the resulting SFH with that calculated from the Hipparcos catalogue within 80 pc of the Sun. We also show how this technique will be applied out to ~5 kpc thanks to the next Gaia data releases, which will allow us to quantify the SFH of the thin disc, thick disc and halo in situ, rather than extrapolating based on the stars from these components that are today in the solar neighbourhood.


2011 ◽  
Vol 141 (4) ◽  
pp. 106 ◽  
Author(s):  
Bradley A. Jacobs ◽  
R. Brent Tully ◽  
Luca Rizzi ◽  
Igor D. Karachentsev ◽  
Kristin Chiboucas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document