scholarly journals The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

2015 ◽  
Vol 11 (S319) ◽  
pp. 105-108
Author(s):  
Dominik A. Riechers ◽  
Peter L. Capak ◽  
Christopher L. Carilli

AbstractCold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the component of the interstellar medium (ISM) that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We here present results that demonstrate the capability of the Atacama Large (sub-)Millimeter Array (ALMA) to detect the cold ISM and dust in “normal” galaxies at redshifts z=5–6. We also show detailed studies of the ISM in massive, dust-obscured starburst galaxies out to z>6 with ALMA, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Karl G. Jansky Very Large Array (VLA). These observations place some of the most direct constraints on the dust-obscured fraction of the star formation history of the universe at z>5 to date, showing that “typical” galaxies at these epochs have low dust content, but also that highly-enriched, dusty starbursts already exist within the first billion years after the Big Bang.

2008 ◽  
Vol 4 (S258) ◽  
pp. 11-22 ◽  
Author(s):  
Rosemary F. G. Wyse

AbstractThe star-formation histories of the main stellar components of the Milky Way constrain critical aspects of galaxy formation and evolution. I discuss recent determinations of such histories, together with their interpretation in terms of theories of disk galaxy evolution.


2019 ◽  
Vol 15 (S341) ◽  
pp. 221-225 ◽  
Author(s):  
Takuya Hashimoto

AbstractIn this IAU symposium, we present results of our recent paper, Hashimoto et al. (2018a) focusing on its spectral energy distribution modeling. We present spectroscopic observations of MACS1149-JD1, a gravitationally lensed galaxy originally discovered by Zheng et al. (2012) via the dropout technique. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we detect an emission line of doubly ionized oxygen, [Oiii] 88 μm, at a redshift of 9.1096±0.0006. This precisely determined redshift indicates that the red rest-frame optical colour observed with the Spitzer Space Telescope arises from a dominant stellar component that formed about 250 million years after the Big Bang, corresponding to a redshift of about 15. MACS1149-JD1 clearly demonstrates the importance and power of spectral energy distribution modeling to understand the earliest star formation history of the Universe.


2008 ◽  
Vol 4 (S258) ◽  
pp. 51-60
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Noelia E. D. Noël ◽  
Antonio Aparicio ◽  
Sebastián L. Hidalgo ◽  
...  

AbstractThe star formation history of the Magellanic Clouds, including the old and intermediate-age star formation events, can be studied reliably and in detail through color-magnitude diagrams reaching the oldest main sequence turnoffs. This paper reviews our current understanding of the Magellanic Clouds' star formation histories and discusses the impact of this information on general studies of galaxy formation and evolution.


2018 ◽  
Vol 14 (S344) ◽  
pp. 271-273
Author(s):  
Ruixiang Chang ◽  
Xiaoyu Kang ◽  
Fenghui Zhang

AbstractUnderstanding the effect of environment on galaxy formation and evolution is one of the hot topics in extragalactic astronomy. Here we constructed a chemical evolution model of disk galaxies. By comparing the model predictions with the observed profiles, we investigated the star formation history of M33, NGC 300 and NGC 2403. We found that M33 has much longer infall timescale than NGC 300 and NGC 2403, and the star formation process of M33 is still active at later phase. Our results suggested that the cold gas supply of M33 is sufficient in the present-day, which may originate from the HI bridge between M33 and M31. In other words, we argue that the local environment plays an important role on the star formation history of a galaxy, at least for M33.


2020 ◽  
Vol 501 (2) ◽  
pp. 1803-1822
Author(s):  
Seunghwan Lim ◽  
Douglas Scott ◽  
Arif Babul ◽  
David J Barnes ◽  
Scott T Kay ◽  
...  

ABSTRACT As progenitors of the most massive objects, protoclusters are key to tracing the evolution and star formation history of the Universe, and are responsible for ${\gtrsim }\, 20$ per cent of the cosmic star formation at $z\, {\gt }\, 2$. Using a combination of state-of-the-art hydrodynamical simulations and empirical models, we show that current galaxy formation models do not produce enough star formation in protoclusters to match observations. We find that the star formation rates (SFRs) predicted from the models are an order of magnitude lower than what is seen in observations, despite the relatively good agreement found for their mass-accretion histories, specifically that they lie on an evolutionary path to become Coma-like clusters at $z\, {\simeq }\, 0$. Using a well-studied protocluster core at $z\, {=}\, 4.3$ as a test case, we find that star formation efficiency of protocluster galaxies is higher than predicted by the models. We show that a large part of the discrepancy can be attributed to a dependence of SFR on the numerical resolution of the simulations, with a roughly factor of 3 drop in SFR when the spatial resolution decreases by a factor of 4. We also present predictions up to $z\, {\simeq }\, 7$. Compared to lower redshifts, we find that centrals (the most massive member galaxies) are more distinct from the other galaxies, while protocluster galaxies are less distinct from field galaxies. All these results suggest that, as a rare and extreme population at high z, protoclusters can help constrain galaxy formation models tuned to match the average population at $z\, {\simeq }\, 0$.


Author(s):  
Monique C. Aller ◽  
Varsha P. Kulkarni ◽  
Donald G. York ◽  
Daniel E. Welty ◽  
Giovanni Vladilo ◽  
...  

AbstractGas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 μm silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.


2009 ◽  
Vol 5 (S262) ◽  
pp. 353-354
Author(s):  
Enrico V. Held ◽  
Eline Tolstoy ◽  
Luca Rizzi ◽  
Mary Cesetti ◽  
Andrew A. Cole ◽  
...  

AbstractWe present the first results of a comprehensive HST study of the star-formation history of Fornax dSph, based on WFPC2 imaging of 7 Fornax fields. Our observations reach the oldest main-sequence turnoffs, allowing us to address fundamental questions of dwarf galaxy evolution, such as the spatial variations in the stellar content, and whether the old stellar population is made up of stars formed in a very early burst or the result of a more continuous star formation.


2012 ◽  
Vol 8 (S295) ◽  
pp. 300-303
Author(s):  
Rosa González Delgado ◽  
Enrique Pérez ◽  
Roberto Cid Fernandes ◽  
Rubén García-Benito ◽  
André de Amorim ◽  
...  

AbstractThe Calar Alto Legacy Integral Field Area (CALIFA) project is an ongoing 3D spectroscopic survey of 600 nearby galaxies of all kinds. This pioneer survey is providing valuable clues on how galaxies form and evolve. Processed through spectral synthesis techniques, CALIFA datacubes allow us to, for the first time, spatially resolve the star formation history of galaxies spread across the color-magnitude diagram. The richness of this approach is already evident from the results obtained for the first ~ 1/6 of the sample. Here we show how the different galactic spatial sub-components (“bulge” and “disk”) grow their stellar mass over time. We explore the results stacking galaxies in mass bins, finding that, except at the lowest masses, galaxies grow inside-out, and that the growth rate depends on a galaxy's mass. The growth rate of inner and outer regions differ maximally at intermediate masses. We also find a good correlation between the age radial gradient and the stellar mass density, suggesting that the local density is a main driver of galaxy evolution.


2010 ◽  
Vol 6 (S277) ◽  
pp. 47-54
Author(s):  
Françoise Combes

AbstractI review some recent results about the molecular content of galaxies, obtained essentially from the CO lines, but also dense tracers, or the dust continuum emission. New results have been obtained on molecular cloud physics, and their efficiency to form stars, shedding light on the Kennicutt-Schmidt law as a function of surface density and galaxy type. Large progress has been made on galaxy at moderate and high redshifts, allowing to interprete the star formation history and star formation efficiency as a function of gas content, or galaxy evolution. In massive galaxies, the gas fraction was higher in the past, and galaxy disks were more unstable and more turbulent. ALMA observations will allow the study of more normal galaxies at high z with higher spatial resolution and sensitivity.


2009 ◽  
Vol 5 (S265) ◽  
pp. 171-178
Author(s):  
Fred Hamann ◽  
Leah E. Simon

AbstractHigh-redshift quasars provide a unique glimpse into the early evolution of massive galaxies. The physical processes that trigger major bursts of star formation in quasar host galaxies (mergers and interactions) probably also funnel gas into the central regions to grow the super-massive black holes (SMBHs) and ignite the luminous quasar phenomenon. The globally dense environments where this occurs were probably also among the first to collapse and manufacture stars in significant numbers after the big bang. Measurements of the elemental abundances near quasars place important constraints on the nature, timing and extent of this star formation. A variety of studies using independent emission and absorption line diagnostics have shown that quasar environments have gas-phase metallicities that are typically a few times solar at all observed redshifts. These results are consistent with galaxy evolution scenarios in which large amounts of star formation (e.g., in the central regions) precede the visibly bright quasar phase. An observed trend for higher metallicities in more luminmous quasars (powered by more massive SMBHs) is probably tied to the well-known mass–metallicity relation among ordinary galaxies. This correlation and the absence of a trend with redshift indicate that mass is a more important parameter in the evolution than the time elapsed since the big bang.


Sign in / Sign up

Export Citation Format

Share Document