scholarly journals ALFALFA Hα Reveals How Galaxies Use Their Hi Fuel

Author(s):  
Anne Jaskot ◽  
Sally Oey ◽  
John Salzer ◽  
Angie Van Sistine ◽  
Eric Bell ◽  
...  

AbstractAtomic hydrogen traces the raw material from which molecular clouds and stars form. With 565 galaxies from the ALFALFA Hα survey, a statistically complete subset of the ALFALFA survey, we examine the processes that affect galaxies' abilities to access and consume their Hi gas. On galaxy-wide scales, Hi gas fractions correlate only weakly with instantaneous specific star formation rates (sSFRs) but tightly with galaxy color. We show that a connection between dust and Hi content, arising from the fundamental mass-metallicity-Hi relation, leads to this tight color correlation. We find that disk galaxies follow a relation between stellar surface density and Hi depletion time, consistent with a scenario in which higher mid-plane pressure leads to more efficient molecular cloud formation from Hi. In contrast, spheroids show no such trend. Starbursts, identified by Hα equivalent width, do not show enhanced Hi gas fractions relative to similar mass non-starburst galaxies. The starbursts' shorter Hi depletion times indicate more efficient consumption of Hi, and galaxy interactions drive this enhanced star formation efficiency in several starbursts. Interestingly, the most disturbed starbursts show greater enhancements in Hi gas fraction, which may indicate an excess of Hi at early merger stages. At low galaxy stellar masses, the triggering mechanism for starbursts is less clear; the high scatter in efficiency and sSFR among low-mass galaxies may result from periodic bursts. We find no evidence for depleted Hi reservoirs in starbursts, which suggests that galaxies may maintain sufficient Hi to fuel multiple starburst episodes.

2020 ◽  
Vol 501 (2) ◽  
pp. 1568-1590
Author(s):  
Lukas J Furtak ◽  
Hakim Atek ◽  
Matthew D Lehnert ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT We present new measurements of the very low mass end of the galaxy stellar mass function (GSMF) at z ∼ 6−7 computed from a rest-frame ultraviolet selected sample of dropout galaxies. These galaxies lie behind the six Hubble Frontier Field clusters and are all gravitationally magnified. Using deep Spitzer/IRAC and Hubble Space Telescope imaging, we derive stellar masses by fitting galaxy spectral energy distributions and explore the impact of different model assumptions and parameter degeneracies on the resulting GSMF. Our sample probes stellar masses down to $M_{\star }\gt 10^{6}\, \text{M}_{\odot}$ and we find the z ∼ 6−7 GSMF to be best parametrized by a modified Schechter function that allows for a turnover at very low masses. Using a Monte Carlo Markov chain analysis of the GSMF, including accurate treatment of lensing uncertainties, we obtain a relatively steep low-mass end slope $\alpha \simeq -1.96_{-0.08}^{+0.09}$ and a turnover at $\log (M_T/\text{M}_{\odot})\simeq 7.10_{-0.56}^{+0.17}$ with a curvature of $\beta \simeq 1.00_{-0.73}^{+0.87}$ for our minimum assumption model with constant star formation history (SFH) and low dust attenuation, AV ≤ 0.2. We find that the z ∼ 6−7 GSMF, in particular its very low mass end, is significantly affected by the assumed functional form of the star formation history and the degeneracy between stellar mass and dust attenuation. For example, the low-mass end slope ranges from $\alpha \simeq -1.82_{-0.07}^{+0.08}$ for an exponentially rising SFH to $\alpha \simeq -2.34_{-0.10}^{+0.11}$ when allowing AV of up to 3.25. Future observations at longer wavelengths and higher angular resolution with the James Webb Space Telescope are required to break these degeneracies and to robustly constrain the stellar mass of galaxies on the extreme low-mass end of the GSMF.


2020 ◽  
Vol 499 (1) ◽  
pp. 668-680
Author(s):  
Alejandro González-Samaniego ◽  
Enrique Vazquez-Semadeni

ABSTRACT We use two hydrodynamical simulations (with and without photoionizing feedback) of the self-consistent evolution of molecular clouds (MCs) undergoing global hierarchical collapse (GHC), to study the effect of the feedback on the structural and kinematic properties of the gas and the stellar clusters formed in the clouds. During this early stage, the evolution of the two simulations is very similar (implying that the feedback from low-mass stars does not affect the cloud-scale evolution significantly) and the star-forming region accretes faster than it can convert gas into stars, causing the instantaneous measured star formation efficiency (SFE) to remain low even in the absence of significant feedback. Afterwards, the ionizing feedback first destroys the filamentary supply to star-forming hubs and ultimately removes the gas from it, thus first reducing the star formation (SF) and finally halting it. The ionizing feedback also affects the initial kinematics and spatial distribution of the forming stars because the gas being dispersed continues to form stars, which inherit its motion. In the non-feedback simulation, the groups remain highly compact and do not mix, while in the run with feedback, the gas dispersal causes each group to expand, and the cluster expansion thus consists of the combined expansion of the groups. Most secondary star-forming sites around the main hub are also present in the non-feedback run, implying a primordial rather than triggered nature. We do find one example of a peripheral star-forming site that appears only in the feedback run, thus having a triggered origin. However, this appears to be the exception rather than the rule, although this may be an artefact of our simplified radiative transfer scheme.


2021 ◽  
Vol 503 (4) ◽  
pp. 5115-5133
Author(s):  
A A Khostovan ◽  
S Malhotra ◽  
J E Rhoads ◽  
S Harish ◽  
C Jiang ◽  
...  

ABSTRACT The H α equivalent width (EW) is an observational proxy for specific star formation rate (sSFR) and a tracer of episodic, bursty star-formation activity. Previous assessments show that the H α EW strongly anticorrelates with stellar mass as M−0.25 similar to the sSFR – stellar mass relation. However, such a correlation could be driven or even formed by selection effects. In this study, we investigate how H α EW distributions correlate with physical properties of galaxies and how selection biases could alter such correlations using a z = 0.47 narrow-band-selected sample of 1572 H α emitters from the Ly α Galaxies in the Epoch of Reionization (LAGER) survey as our observational case study. The sample covers a 3 deg2 area of COSMOS with a survey comoving volume of 1.1 × 105 Mpc3. We assume an intrinsic EW distribution to form mock samples of H α emitters and propagate the selection criteria to match observations, giving us control on how selection biases can affect the underlying results. We find that H α EW intrinsically correlates with stellar mass as W0∝M−0.16 ± 0.03 and decreases by a factor of ∼3 from 107 M⊙ to 1010 M⊙, while not correcting for selection effects steepens the correlation as M−0.25 ± 0.04. We find low-mass H α emitters to be ∼320 times more likely to have rest-frame EW>200 Å compared to high-mass H α emitters. Combining the intrinsic W0–stellar mass correlation with an observed stellar mass function correctly reproduces the observed H α luminosity function, while not correcting for selection effects underestimates the number of bright emitters. This suggests that the W0–stellar mass correlation when corrected for selection effects is physically significant and reproduces three statistical distributions of galaxy populations (line luminosity function, stellar mass function, EW distribution). At lower stellar masses, we find there are more high-EW outliers compared to high stellar masses, even after we take into account selection effects. Our results suggest that high sSFR outliers indicative of bursty star formation activity are intrinsically more prevalent in low-mass H α emitters and not a byproduct of selection effects.


2015 ◽  
Vol 11 (S315) ◽  
pp. 254-257
Author(s):  
Miroslava Dessauges-Zavadsky ◽  
Michel Zamojski ◽  
Daniel Schaerer ◽  
Françoise Combes ◽  
Eiichi Egami ◽  
...  

AbstractCurrent star-forming galaxies (SFGs) with CO measurements at z ~ 2 suffer from a bias toward high star formation rates (SFR) and high stellar masses (M*). It is yet essential to extend the CO measurements to the more numerous z ~ 2 SFGs with LIR < L⋆ = 4× 1011 L⊙ and M* < 2.5× 1010 M⊙. We have achieved CO, stars, and dust measurements in 8 such sub-L⋆ SFGs with the help of gravitational lensing. Combined with CO-detected galaxies from the literature, we find that the LIR, L′CO(1−0) data are best-fitted with a single relation that favours a universal star formation. This picture emerges because of the enlarged star formation efficiency spread of the current z>1 SFGs sample. We show that this spread is mostly triggered by the combination of redshift, specific SFR, and M*. Finally, we find evidence for a non-universal dust-to-gas ratio (DGR) with a clear trend for a lower DGR mean in z>1 SFGs by a factor of 2 with respect to local galaxies and high-redshift sub-mm galaxies at fixed about solar metallicity.


2020 ◽  
Vol 493 (4) ◽  
pp. 5625-5635
Author(s):  
Cody M Rude ◽  
Madina R Sultanova ◽  
Gihan L Ipita Kaduwa Gamage ◽  
Wayne A Barkhouse ◽  
Sandanuwan P Kalawila Vithanage

ABSTRACT Evolution of galaxies in dense environments can be affected by close encounters with neighbouring galaxies and interactions with the intracluster medium. Dwarf galaxies (dGs) are important as their low mass makes them more susceptible to these effects than giant systems. Combined luminosity functions (LFs) in the r and u band of 15 galaxy clusters were constructed using archival data from the Canada–France–Hawaii Telescope. LFs were measured as a function of clustercentric radius from stacked cluster data. Marginal evidence was found for an increase in the faint-end slope of the u-band LF relative to the r-band with increasing clustercentric radius. The dwarf-to-giant ratio (DGR) was found to increase toward the cluster outskirts, with the u-band DGR increasing faster with clustercentric radius compared to the r-band. The dG blue fraction was found to be ∼2 times larger than the giant galaxy blue fraction over all clustercentric distance (∼5σ level). The central concentration (C) was used as a proxy to distinguish nucleated versus non-nucleated dGs. The ratio of high-C to low-C dGs was found to be ∼2 times greater in the inner cluster region compared to the outskirts (2.8σ level). The faint-end slope of the r-band LF for the cluster outskirts (0.6 ≤ r/r200 &lt; 1.0) is steeper than the Sloan Digital Sky Survey field LF, while the u-band LF is marginally steeper at the 2.5σ level. Decrease in the faint-end slope of the r- and u-band cluster LFs towards the cluster centre is consistent with quenching of star formation via ram pressure stripping and galaxy–galaxy interactions.


2020 ◽  
Vol 498 (2) ◽  
pp. 1560-1575 ◽  
Author(s):  
M E Jarvis ◽  
C M Harrison ◽  
V Mainieri ◽  
G Calistro Rivera ◽  
P Jethwa ◽  
...  

ABSTRACT We use a sample of powerful $z\, \approx \, 0.1$ type 2 quasars (‘obscured’; log [LAGN/erg s$^{-1}]\, \gtrsim \, 45$), which host kpc-scale ionized outflows and jets, to identify possible signatures of AGN feedback on the total molecular gas reservoirs of their host galaxies. Specifically, we present Atacama Pathfinder EXperiment (APEX) observations of the CO(2–1) transition for nine sources and the CO(6–5) for a subset of three. We find that the majority of our sample reside in starburst galaxies (average specific star formation rates – sSFR – of 1.7 Gyr−1), with the seven CO-detected quasars also having large molecular gas reservoirs (average Mgas = 1.3 × 1010 M⊙), even though we had no pre-selection on the star formation or molecular gas properties. Despite the presence of quasars and outflows, we find that the molecular gas fractions (Mgas/M⋆ = 0.1–1.2) and depletion times (Mgas/SFR = 0.16–0.95 Gyr) are consistent with those expected for the overall galaxy population with matched stellar masses and sSFRs. Furthermore, for at least two of the three targets with the required measurements, the CO(6–5)/CO(2–1) emission-line ratios are consistent with star formation dominating the CO excitation over this range of transitions. The targets in our study represent a gas-rich phase of galaxy evolution with simultaneously high levels of star formation and nuclear activity; furthermore, the jets and outflows do not have an immediate appreciable impact on the global molecular gas reservoirs.


2018 ◽  
Vol 14 (A30) ◽  
pp. 118-118
Author(s):  
Fatemeh S. Tabatabaei ◽  
M. Almudena Prieto ◽  
Juan A. Fernández-Ontiveros

AbstractThe role of the magnetic fields in the formation and quenching of stars with different mass is unknown. We studied the energy balance and the star formation efficiency in a sample of molecular clouds in the central kpc region of NGC 1097, known to be highly magnetized. Combining the full polarization VLA/radio continuum observations with the HST/Hα, Paα and the SMA/CO lines observations, we separated the thermal and non-thermal synchrotron emission and compared the magnetic, turbulent, and thermal pressures. Most of the molecular clouds are magnetically supported against gravitational collapse needed to form cores of massive stars. The massive star formation efficiency of the clouds also drops with the magnetic field strength, while it is uncorrelated with turbulence (Tabatabaei et al. 2018). The inefficiency of the massive star formation and the low-mass stellar population in the center of NGC 1097 can be explained in the following steps: I) Magnetic fields supporting the molecular clouds prevent the collapse of gas to densities needed to form massive stars. II) These clouds can then be fragmented into smaller pieces due to e.g., stellar feedback, non-linear perturbations and instabilities leading to local, small-scale diffusion of the magnetic fields. III) Self-gravity overcomes and the smaller clouds seed the cores of the low-mass stars.


2010 ◽  
Vol 6 (S270) ◽  
pp. 133-140
Author(s):  
Matthew R. Bate

AbstractI review what has been learnt so far regarding the origin of stellar properties from numerical simulations of the formation of groups and clusters of stars. In agreement with observations, stellar properties are found to be relatively robust to variations of initial conditions in terms of molecular cloud structure and kinetics, as long as extreme initial conditions (e.g. strong central condensation, weak or no turbulence) and small-scale driving are avoided, but properties may differ between bound and unbound clouds. Radiative feedback appears crucial for setting stellar masses, even for low-mass stars, while magnetic fields can provide low star formation rates.


2016 ◽  
Vol 11 (S321) ◽  
pp. 339-341
Author(s):  
Michael V. Maseda ◽  

AbstractStar formation histories of local dwarf galaxies, derived through resolved stellar populations, appear complex and varied. The general picture derived from hydrodynamical simulations is one of cold gas accretion and bursty star formation, followed by feedback from supernovae and winds that heat and eject the central gas reservoirs. This ejection halts star formation until the material cools and re-accretes, resulting in an episodic SFH, particularly at stellar masses below ~ 109 M⊙. Such feedback has often been cited as the driving force behind the observed slowly-rising rotation curves in local dwarfs, due to an under-density of dark matter compared to theoretical models, which is one of the primary challenges to LCDM cosmology. However, these events have not yet been directly observed at high-redshift. Recently, using HST imaging and grism spectroscopy, we have uncovered an abundant population of low-mass galaxies (M* < 109 M⊙) at z = 1 - 2 that are undergoing strong bursts of star formation, in agreement with the theoretical predictions. These Extreme Emission Line Galaxies, with high specific SFRs and shallow gravitational potential wells, are ideal places to test the theoretical prediction of strong feedback-driven outflows. Here we use deep MUSE spectroscopy to search these galaxies for signatures of outflowing material, namely kinematic offsets between absorption lines (in the restframe optical and UV), which trace cool gas, and the nebular emission lines, which define the systemic redshift of the galaxy. Although the EELGs are intrinsically very faint, stacked spectra reveal blueshifted velocity centroids for Fe II absorption, which is indicative of outflowing cold gas. This represents the first constraint on outflows in M* < 109 M⊙ galaxies at z = 1 - 2. These outflows should regulate the star formation histories of low-mass galaxies at early cosmic times and thus play a crucial role in galaxy growth and evolution.


1999 ◽  
Vol 186 ◽  
pp. 414-414
Author(s):  
S. Leon ◽  
F. Combes ◽  
T.K. Menon

Compact groups are ideal sites to study the influence of strong dynamical evolution due to environment on molecular cloud formation and star formation efficiency. We have observed 70 galaxies belonging to 45 Hickson compact groups (HCGs) in the 12CO(1→0) and 12CO(2→1) lines, in order to determine their molecular content. We compare the gas content relative to blue and LFIR luminosities of galaxies in compact groups with respect to other samples in the literature, including various environments and morphological types. We find that there is some hint, of enhanced MH2/LB and Mdust/LB ratios in the galaxies from compact group with respect to our control sample, especially for the most compact groups, suggesting that tidal interactions can drive the gas component inwards, by removing its angular momentum, and concentrating it in the dense central regions, where it is easily detected. The threshold at 20–30 kpc in mean galaxy separation for the enhancement of H2 suggests that it must correspond to an acceleration of the merging process and a significant inward gas flow. The molecular gas content in compact group galaxies is similar to that in pairs and starburst samples. However, the total LFIR luminosity of HCGs is quite similar to that of the control sample, and therefore the star formation efficiency appears lower than in the control galaxies. However this assumes that the FIR spatial distributions are similar in both samples which is not the case at radio frequencies. Higher spatial resolution FIR data are needed to make a valid comparison. Given their short dynamical friction time-scale, it is possible that some of these systems are in the final stage before merging, leading to ultraluminous starburst phases. We also find for all galaxy samples that the H2 content (normalized to blue luminosity) is strongly correlated with LFIR, while the total gas content (H2+HI) is not.


Sign in / Sign up

Export Citation Format

Share Document