scholarly journals Large scale profiles of galaxies at z=0-2 studied by stacking the HSC SSP survey data

2016 ◽  
Vol 11 (S321) ◽  
pp. 318-320
Author(s):  
Mariko Kubo ◽  
Masami Ouchi ◽  
Takatoshi Shibuya

AbstractWe are carrying out the study of the evolution of radial surface brightness profiles of galaxies from z = 0 to 2 by stacking analysis using data corrected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). This will allow us to constrain the large scale average profiles of various galaxy populations at high redshift. From the stacking analysis of galaxies selected based on their photometric redshifts, we successfully detected the outer components of galaxies at z > 1 extending to at least ~80 kpc, which imply an early formation for the galaxy outskirts.

2020 ◽  
Vol 493 (4) ◽  
pp. 5336-5356
Author(s):  
Richard M Bielby ◽  
Michele Fumagalli ◽  
Matteo Fossati ◽  
Marc Rafelski ◽  
Benjamin Oppenheimer ◽  
...  

ABSTRACT We present a study of the galaxy environment of nine strong H i + C iv absorption line systems (16.2 < log(N(HI)) < 21.2) spanning a wide range in metallicity at z ∼ 4−5, using MUSE integral field and X-Shooter spectroscopic data collected in a z ≈ 5.26 quasar field. We identify galaxies within a 250 kpc and ±1000 km s−1 window for six out of the nine absorption systems, with two of the absorption line systems showing multiple associated galaxies within the MUSE field of view. The space density of Ly α emitting galaxies (LAEs) around the H i and C iv systems is ≈10−20 times the average sky density of LAEs given the flux limit of our survey, showing a clear correlation between the absorption and galaxy populations. Further, we find that the strongest C iv systems in our sample are those that are most closely aligned with galaxies in velocity space, i.e. within velocities of ±500 km s−1. The two most metal-poor systems lie in the most dense galaxy environments, implying we are potentially tracing gas that is infalling for the first time into star-forming groups at high redshift. Finally, we detect an extended Ly α nebula around the z ≈ 5.26 quasar, which extends up to ≈50 kpc at the surface brightness limit of 3.8 × 10−18 erg s−1 cm−2 arcsec−2. After scaling for surface brightness dimming, we find that this nebula is centrally brighter, having a steeper radial profile than the average for nebulae studied at z ∼ 3 and is consistent with the mild redshift evolution seen from z ≈ 2.


2021 ◽  
Vol 922 (2) ◽  
pp. 153
Author(s):  
Adam Broussard ◽  
Eric Gawiser

Abstract The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will produce several billion photometric redshifts (photo-z's), enabling cosmological analyses to select a subset of galaxies with the most accurate photo-z. We perform initial redshift fits on Subaru Strategic Program galaxies with deep grizy photometry using Trees for Photo-Z (TPZ) before applying a custom neural network classifier (NNC) tuned to select galaxies with (z phot − z spec)/(1 + z spec) < 0.10. We consider four cases of training and test sets ranging from an idealized case to using data augmentation to increase the representation of dim galaxies in the training set. Selections made using the NNC yield significant further improvements in outlier fraction and photo-z scatter (σ z ) over those made with typical photo-z uncertainties. As an example, when selecting the best third of the galaxy sample, the NNC achieves a 35% improvement in outlier rate and a 23% improvement in σ z compared to using uncertainties from TPZ. For cosmology and galaxy evolution studies, this method can be tuned to retain a particular sample size or to achieve a desired photo-z accuracy; our results show that it is possible to retain more than a third of an LSST-like galaxy sample while reducing σ z by a factor of 2 compared to the full sample, with one-fifth as many photo-z outliers. For surveys like LSST that are not limited by shot noise, this method enables a larger number of tomographic redshift bins and hence a significant increase in the total signal to noise of galaxy angular power spectra.


2019 ◽  
Vol 632 ◽  
pp. A49 ◽  
Author(s):  
F. Sarron ◽  
C. Adami ◽  
F. Durret ◽  
C. Laigle

Context. Galaxy clusters and groups are thought to accrete material along the preferred direction of cosmic filaments. These structures have proven difficult to detect because their contrast is low, however, and only a few studies have focused on cluster infall regions. Aims. We detect cosmic filaments around galaxy clusters using photometric redshifts in the range 0.15 <  z <  0.7. We characterise galaxy populations in these structures to study the influence of pre-processing by cosmic filaments and galaxy groups on star formation quenching. Methods. We detected cosmic filaments in the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) T0007 data, focusing on regions around clusters of the AMASCFI CFHTLS cluster sample. The filaments were reconstructed with the discrete persistent structure extractor (DISPERSE) algorithm in photometric redshift slices. We show that this reconstruction is reliable for a CFHTLS-like survey at 0.15 <  z <  0.7 using a mock galaxy catalogue. We split our galaxy catalogue into two populations (passive and star forming) using the LePhare spectral energy density fitting algorithm and worked with two redshift bins (0.15 <  z ≤ 0.4 and 0.4 <  z <  0.7). Results. We showed that the AMASCFI cluster connectivity (i.e. the number of filaments that is connected to a cluster) increases with cluster mass M200. Filament galaxies outside R200 are found to be closer to clusters at low redshift, regardless of the galaxy type. Passive galaxies in filaments are closer to clusters than star-forming galaxies in the low redshift bin alone. The passive fraction of galaxies decreases with increasing clustercentric distance up to d ∼ 5 cMpc. Galaxy groups and clusters that are not located at nodes of our reconstruction are mainly found inside cosmic filaments. Conclusions. These results give clues for pre-processing in cosmic filaments that could be due to smaller galaxy groups. This trend could be further explored by applying this method to larger photometric surveys such as the Hyper Suprime-Cam Subaru Strategic Program (HSC-SPP) or Euclid.


Author(s):  
Naoki Yasuda ◽  
Masaomi Tanaka ◽  
Nozomu Tominaga ◽  
Ji-an Jiang ◽  
Takashi J Moriya ◽  
...  

Abstract We present an overview of a deep transient survey of the COSMOS field with the Subaru Hyper Suprime-Cam (HSC). The survey was performed for the 1.77 deg2 ultra-deep layer and 5.78 deg2 deep layer in the Subaru Strategic Program over six- and four-month periods from 2016 to 2017, respectively. The ultra-deep layer reaches a median depth per epoch of 26.4, 26.3, 26.0, 25.6, and 24.6 mag in g, r, i, z, and y bands, respectively; the deep layer is ∼0.6 mag shallower. In total, 1824 supernova candidates were identified. Based on light-curve fitting and derived light-curve shape parameter, we classified 433 objects as Type Ia supernovae (SNe); among these candidates, 129 objects have spectroscopic or COSMOS2015 photometric redshifts and 58 objects are located at z &gt; 1. Our unique data set doubles the number of Type Ia SNe at z &gt; 1 and enables various time-domain analyses of Type II SNe, high-redshift superluminous SNe, variable stars, and active galactic nuclei.


2019 ◽  
Vol 486 (1) ◽  
pp. 21-41 ◽  
Author(s):  
R M Bielby ◽  
J P Stott ◽  
F Cullen ◽  
T M Tripp ◽  
J N Burchett ◽  
...  

ABSTRACT We present the first results from a study of O vi absorption around galaxies at z &lt; 1.44 using data from a near-infrared grism spectroscopic Hubble Space Telescope Large Programme, the Quasar Sightline and Galaxy Evolution (QSAGE) survey. QSAGE is the first grism galaxy survey to focus on the circumgalactic medium at z ∼ 1, providing a blind survey of the galaxy population. The galaxy sample is H α flux limited (f(H α) &gt; 2 × 10−17 erg s−1 cm−2) at 0.68 &lt; z &lt; 1.44, corresponding to ≳0.2–0.8 M⊙ yr−1. In this first of 12 fields, we combine the galaxy data with high-resolution STIS and COS spectroscopy of the background quasar to study O vi in the circumgalactic medium. At z ∼ 1, we find O vi absorption systems up to b ∼ 350 kpc (∼4Rvir) from the nearest detected galaxy. Further, we find ${\sim }50{{\ \rm per\ cent}}$ of ≳1 M⊙ yr−1 star-forming galaxies within 2Rvir show no associated O vi absorption to a limit of at least N(O vi) = 1013.9 cm−2. That we detect O vi at such large distances from galaxies and that a significant fraction of star-forming galaxies show no detectable O vi absorption disfavours outflows from ongoing star formation as the primary medium traced by these absorbers. Instead, by combining our own low- and high-redshift data with existing samples, we find tentative evidence for many strong (N(O vi) &gt; 1014 cm−2) O vi absorption systems to be associated with M⋆ ∼ 109.5–10 M⊙ mass galaxies (Mhalo ∼ 1011.5–12 M⊙ dark matter haloes), and infer that they may be tracing predominantly collisionally ionized gas within the haloes of such galaxies.


2004 ◽  
Vol 21 (4) ◽  
pp. 344-351 ◽  
Author(s):  
Simon Driver

AbstractWith the advent of large-scale surveys (i.e. Legacy Surveys) it is now possible to start looking beyond the galaxy luminosity function (LF) to more detailed statistical representations of the galaxy population, i.e multivariate distributions. In this review I first summarise the current state-of-play of the B-band global and cluster LFs and then briefly present two promising bivariate distributions: the luminosity–surface brightness plane (LSP) and the colour–luminosity plane (CLP). In both planes galaxy bulges and galaxy disks form marginally overlapping but distinct distributions, indicating two key formation/evolutionary processes (presumably merger and accretion). Forward progress in this subject now requires the routine application of reliable bulge–disk decomposition codes to allow independent investigation of these two key components.


2020 ◽  
Vol 640 ◽  
pp. A67
Author(s):  
O. B. Kauffmann ◽  
O. Le Fèvre ◽  
O. Ilbert ◽  
J. Chevallard ◽  
C. C. Williams ◽  
...  

We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <  z <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log(M*/M⊙) > 6 and redshifts of 0 <  z <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z >  5 galaxy samples can be reduced to < 0.01 arcmin−2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <  z <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes mUV <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.


1964 ◽  
Vol 20 ◽  
pp. 41-45 ◽  
Author(s):  
L. Perek

Planetary nebulae are convenient objects for studying the large-scale structure of the Galaxy. Firstly, they are easily recognized up to considerable distances on plates taken through an objective prism, and secondly, methods have been devised by various authors to determine their distances from two observable quantities: angular diameter and surface brightness. The importance of the subsystem of planetary nebulae has been accentuated especially by the discoveries by Minkowski and Haro of large numbers of planetaries in the direction of the galactic centre. The distribution of planetaries on the sphere suggests that they are connected with the galactic nucleus, but no direct determination of their distances, which would either confirm or contradict this statement, is available. The most serious obstacle in studying the subsystem of planetaries is the lack of observing data. The aim of the reported paper (Perek 1963) is to give a tentative outline of the distribution of planetaries in space based on extensive new observing material.


1990 ◽  
Vol 139 ◽  
pp. 85-97
Author(s):  
P. C. van der Kruit

In this review I discuss some aspects of the luminosity distributions in our Galaxy and external spiral galaxies. The major conclusions are the following: (1) the radial scale length of the luminosity distribution in the disk of our Galaxy is 5.0 ± 0.5 kpc, (2) on this basis the Hubble constant needs to be at most 65 ± 10 km s−1 Mpc−1, if our Galaxy and M31 are among the largest spirals, as the Fisher-Tully relation suggests, (3) the probable Hubble type of the Galaxy is SbI–II, (4) the bi-modal distribution function of face-on, central surface brightness μ0 and radial scale length h of spirals shows a preferred value for μ0 of about 22 B-mag arcsec2 and a distribution of h that declines with one e-folding per kpc, (5) the Galaxy is a normal, fairly large Sb galaxy, and (6) galaxies similar to our own in terms of large-scale, nonmorphological properties are NGC 891 and NGC 5033.


2018 ◽  
Vol 609 ◽  
pp. A48 ◽  
Author(s):  
J. A. L. Aguerri ◽  
A. Longobardi ◽  
S. Zarattini ◽  
A. Kundert ◽  
E. D’Onghia ◽  
...  

Context. It is thought that fossil systems are relics of structure formation in the primitive Universe. They are galaxy aggregations that have assembled their mass at high redshift with few or no subsequent accretion. Observationally these systems are selected by large magnitude gaps between their 1st and 2nd ranked galaxies (Δm12). Nevertheless, there is still debate over whether or not this observational criterium selects dynamically evolved ancient systems. Aims. We have studied the properties of the nearby fossil group RX J075243.6+455653 in order to understand the mass assembly of this system. Methods. Deep spectroscopic observations allow us to construct the galaxy luminosity function (LF) of RX J075243.6+455653 down to Mr*+6. The analysis of the faint-end of the LF in groups and clusters provides valuable information about the mass assembly of the system. In addition, we have analyzed the nearby large-scale structure around this group. Results. We identified 26 group members within r200 ~ 0.96 Mpc. These galaxies are located at Vc = 15551 ± 65 km s-1 and have a velocity dispersion of σc = 333 ± 46 km s-1. The X-ray luminosity of the group is LX = 2.2 × 1043 h70-2 erg s-1, resulting in a mass of M = 4.2 × 1013 h70-1 within 0.5r200. The group has Δm12 = 2.1 within 0.5r200, confirming the fossil nature of this system. RX J075243.6+455653 has a central brightest group galaxy (BGG) with Mr = −22.67, one of the faintest BGGs observed in fossil systems. The LF of the group shows a flat faint-end slope (α = −1.08 ± 0.33). This low density of dwarf galaxies is confirmed by the low value of the dwarf-to-giant ratio (DGR = 0.99 ± 0.49) for this system. Both the lack of dwarf galaxies and the low luminosity of the BGG suggests that RX J075243.6+455653 still has to accrete mass from its nearby environment. This mass accretion will be achieved because it is the dominant structure of a rich environment formed by several groups of galaxies (15) within ~ 7 Mpc from the group center and with ± 1000 km s-1. Conclusions. RX J075243.6+455653 is a group of galaxies that has not yet completed the process of its mass assembly. This new mass accretion will change the fossil state of the group. This group is an example of a galaxy aggregation selected by a large magnitude gap but still in the process of the accretion of its mass.


Sign in / Sign up

Export Citation Format

Share Document