scholarly journals Quasar Sightline and Galaxy Evolution (QSAGE) survey – I. The galaxy environment of O vi absorbers up to z = 1.4 around PKS 0232−04

2019 ◽  
Vol 486 (1) ◽  
pp. 21-41 ◽  
Author(s):  
R M Bielby ◽  
J P Stott ◽  
F Cullen ◽  
T M Tripp ◽  
J N Burchett ◽  
...  

ABSTRACT We present the first results from a study of O vi absorption around galaxies at z < 1.44 using data from a near-infrared grism spectroscopic Hubble Space Telescope Large Programme, the Quasar Sightline and Galaxy Evolution (QSAGE) survey. QSAGE is the first grism galaxy survey to focus on the circumgalactic medium at z ∼ 1, providing a blind survey of the galaxy population. The galaxy sample is H α flux limited (f(H α) > 2 × 10−17 erg s−1 cm−2) at 0.68 < z < 1.44, corresponding to ≳0.2–0.8 M⊙ yr−1. In this first of 12 fields, we combine the galaxy data with high-resolution STIS and COS spectroscopy of the background quasar to study O vi in the circumgalactic medium. At z ∼ 1, we find O vi absorption systems up to b ∼ 350 kpc (∼4Rvir) from the nearest detected galaxy. Further, we find ${\sim }50{{\ \rm per\ cent}}$ of ≳1 M⊙ yr−1 star-forming galaxies within 2Rvir show no associated O vi absorption to a limit of at least N(O vi) = 1013.9 cm−2. That we detect O vi at such large distances from galaxies and that a significant fraction of star-forming galaxies show no detectable O vi absorption disfavours outflows from ongoing star formation as the primary medium traced by these absorbers. Instead, by combining our own low- and high-redshift data with existing samples, we find tentative evidence for many strong (N(O vi) > 1014 cm−2) O vi absorption systems to be associated with M⋆ ∼ 109.5–10 M⊙ mass galaxies (Mhalo ∼ 1011.5–12 M⊙ dark matter haloes), and infer that they may be tracing predominantly collisionally ionized gas within the haloes of such galaxies.

2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2019 ◽  
Vol 491 (3) ◽  
pp. 3672-3701 ◽  
Author(s):  
N Boardman ◽  
G Zasowski ◽  
A Seth ◽  
J Newman ◽  
B Andrews ◽  
...  

ABSTRACT The Milky Way provides an ideal laboratory to test our understanding of galaxy evolution, owing to our ability to observe our Galaxy over fine scales. However, connecting the Galaxy to the wider galaxy population remains difficult, due to the challenges posed by our internal perspective and to the different observational techniques employed. Here, we present a sample of galaxies identified as Milky Way analogues on the basis of their stellar masses and bulge-to-total ratios, observed as part of the Mapping Nearby Galaxies at Apache Point Observatory survey. We analyse the galaxies in terms of their stellar kinematics and populations as well as their ionized gas contents. We find our sample to contain generally young stellar populations in their outskirts. However, we find a wide range of stellar ages in their central regions, and we detect central active galactic nucleus-like or composite-like activity in roughly half of the sample galaxies, with the other half consisting of galaxies with central star-forming emission or emission consistent with old stars. We measure gradients in gas metallicity and stellar metallicity that are generally flatter in physical units than those measured for the Milky Way; however, we find far better agreement with the Milky Way when scaling gradients by galaxies’ disc scale lengths. From this, we argue much of the discrepancy in metallicity gradients to be due to the relative compactness of the Milky Way, with differences in observing perspective also likely to be a factor.


2020 ◽  
Vol 494 (3) ◽  
pp. 3453-3463
Author(s):  
Maxime Trebitsch ◽  
Marta Volonteri ◽  
Yohan Dubois

ABSTRACT Recent deep surveys have unravelled a population of faint active galactic nuclei (AGNs) in the high-redshift Universe, leading to various discussions on their nature and their role during the Epoch of Reionization. We use cosmological radiation hydrodynamics simulations of a bright galaxy at z ∼ 6 (${M_\star } \gtrsim 10^{10}\, {\rm M}_{\odot }$) hosting an actively growing supermassive black hole to study the properties of these objects. In particular, we study how the black hole and the galaxy coevolve and what is the relative contribution of the AGNs and of the stellar populations to the luminosity budget of the system. We find that the feedback from the AGN has no strong effect on the properties of the galaxy, and does not increase the total ionizing luminosity of the host. The average escape fraction of our galaxy is around $f_{\rm esc} \sim 5{{\ \rm per\ cent}}$. While our galaxy would be selected as an AGN in deep X-ray surveys, most of the ultraviolet (UV) luminosity is originating from stellar populations. This confirms that there is a transition in the galaxy population from star-forming galaxies to quasar hosts, with bright Lyman-break galaxies with MUV around −22 falling in the overlap region. Our results also suggest that faint AGNs do not contribute significantly to reionizing the Universe.


2019 ◽  
Vol 488 (1) ◽  
pp. 902-909
Author(s):  
A A Chrimes ◽  
A J Levan ◽  
E R Stanway ◽  
E Berger ◽  
J S Bloom ◽  
...  

Abstract The number of long gamma-ray bursts (GRBs) known to have occurred in the distant Universe (z > 5) is small (∼15); however, these events provide a powerful way of probing star formation at the onset of galaxy evolution. In this paper, we present the case for GRB 100205A being a largely overlooked high-redshift event. While initially noted as a high-z candidate, this event and its host galaxy have not been explored in detail. By combining optical and near-infrared Gemini afterglow imaging (at t < 1.3 d since burst) with deep late-time limits on host emission from the Hubble Space Telescope, we show that the most likely scenario is that GRB 100205A arose in the range 4 < z < 8. GRB 100205A is an example of a burst whose afterglow, even at ∼1 h post burst, could only be identified by 8-m class IR observations, and suggests that such observations of all optically dark bursts may be necessary to significantly enhance the number of high-redshift GRBs known.


2020 ◽  
Vol 642 ◽  
pp. A192 ◽  
Author(s):  
◽  
V. Guglielmo ◽  
R. Saglia ◽  
F. J. Castander ◽  
A. Galametz ◽  
...  

The Complete Calibration of the Colour–Redshift Relation survey (C3R2) is a spectroscopic effort involving ESO and Keck facilities designed specifically to empirically calibrate the galaxy colour–redshift relation – P(z|C) to the Euclid depth (iAB = 24.5) and is intimately linked to the success of upcoming Stage IV dark energy missions based on weak lensing cosmology. The aim is to build a spectroscopic calibration sample that is as representative as possible of the galaxies of the Euclid weak lensing sample. In order to minimise the number of spectroscopic observations necessary to fill the gaps in current knowledge of the P(z|C), self-organising map (SOM) representations of the galaxy colour space have been constructed. Here we present the first results of an ESO@VLT Large Programme approved in the context of C3R2, which makes use of the two VLT optical and near-infrared multi-object spectrographs, FORS2 and KMOS. This data release paper focuses on high-quality spectroscopic redshifts of high-redshift galaxies observed with the KMOS spectrograph in the near-infrared H- and K-bands. A total of 424 highly-reliable redshifts are measured in the 1.3 ≤ z ≤ 2.5 range, with total success rates of 60.7% in the H-band and 32.8% in the K-band. The newly determined redshifts fill 55% of high (mainly regions with no spectroscopic measurements) and 35% of lower (regions with low-resolution/low-quality spectroscopic measurements) priority empty SOM grid cells. We measured Hα fluxes in a 1.″2 radius aperture from the spectra of the spectroscopically confirmed galaxies and converted them into star formation rates. In addition, we performed an SED fitting analysis on the same sample in order to derive stellar masses, E(B − V), total magnitudes, and SFRs. We combine the results obtained from the spectra with those derived via SED fitting, and we show that the spectroscopic failures come from either weakly star-forming galaxies (at z <  1.7, i.e. in the H-band) or low S/N spectra (in the K-band) of z >  2 galaxies.


2018 ◽  
Vol 619 ◽  
pp. A15 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
J. Richard ◽  
K. Nakajima ◽  
...  

Observations have shown that massive star-forming clumps are present in the internal structure of high-redshift galaxies. One way to study these clumps in detail with a higher spatial resolution is by exploiting the power of strong gravitational lensing which stretches images on the sky. In this work, we present an analysis of the clumpy galaxy A68-HLS115 at z = 1.5858, located behind the cluster Abell 68, but strongly lensed by a cluster galaxy member. Resolved observations with SINFONI/VLT in the near-infrared (NIR) show Hα, Hβ, [NII], and [OIII] emission lines. Combined with images covering the B band to the far-infrared (FIR) and CO(2–1) observations, this makes this galaxy one of the only sources for which such multi-band observations are available and for which it is possible to study the properties of resolved star-forming clumps and to perform a detailed analysis of the integrated properties, kinematics, and metallicity. We obtain a stability of υrot/σ0 = 2.73 by modeling the kinematics, which means that the galaxy is dominated by rotation, but this ratio also indicates that the disk is marginally stable. We find a high intrinsic velocity dispersion of 80 ± 10 km s−1 that could be explained by the high gas fraction of fgas = 0.75 ± 0.15 observed in this galaxy. This high fgas and the observed sSFR of 3.12 Gyr−1 suggest that the disk turbulence and instabilities are mostly regulated by incoming gas (available gas reservoir for star formation). The direct measure of the Toomre stability criterion of Qcrit = 0.70 could also indicate the presence of a quasi-stable thick disk. Finally, we identify three clumps in the Hα map which have similar velocity dispersions, metallicities, and seem to be embedded in the rotating disk. These three clumps contribute together to ∼40% on the SFRHα of the galaxy and show a star formation rate density about ∼100 times higher than HII regions in the local Universe.


2020 ◽  
Vol 493 (4) ◽  
pp. 5336-5356
Author(s):  
Richard M Bielby ◽  
Michele Fumagalli ◽  
Matteo Fossati ◽  
Marc Rafelski ◽  
Benjamin Oppenheimer ◽  
...  

ABSTRACT We present a study of the galaxy environment of nine strong H i + C iv absorption line systems (16.2 &lt; log(N(HI)) &lt; 21.2) spanning a wide range in metallicity at z ∼ 4−5, using MUSE integral field and X-Shooter spectroscopic data collected in a z ≈ 5.26 quasar field. We identify galaxies within a 250 kpc and ±1000 km s−1 window for six out of the nine absorption systems, with two of the absorption line systems showing multiple associated galaxies within the MUSE field of view. The space density of Ly α emitting galaxies (LAEs) around the H i and C iv systems is ≈10−20 times the average sky density of LAEs given the flux limit of our survey, showing a clear correlation between the absorption and galaxy populations. Further, we find that the strongest C iv systems in our sample are those that are most closely aligned with galaxies in velocity space, i.e. within velocities of ±500 km s−1. The two most metal-poor systems lie in the most dense galaxy environments, implying we are potentially tracing gas that is infalling for the first time into star-forming groups at high redshift. Finally, we detect an extended Ly α nebula around the z ≈ 5.26 quasar, which extends up to ≈50 kpc at the surface brightness limit of 3.8 × 10−18 erg s−1 cm−2 arcsec−2. After scaling for surface brightness dimming, we find that this nebula is centrally brighter, having a steeper radial profile than the average for nebulae studied at z ∼ 3 and is consistent with the mild redshift evolution seen from z ≈ 2.


2018 ◽  
Vol 618 ◽  
pp. A140 ◽  
Author(s):  
Remco F. J. van der Burg ◽  
Sean McGee ◽  
Hervé Aussel ◽  
Håkon Dahle ◽  
Monique Arnaud ◽  
...  

We study the abundance of star-forming and quiescent galaxies in a sample of 21 clusters at 0.5 <  z <  0.7, detected with the Planck satellite. Thanks to the large volume probed by Planck, these systems are extremely massive, and provide an excellent laboratory to study any environmental effects on their galaxies’ properties. We measure the cluster galaxy stellar mass function (SMF), which is a fundamental observable to study and constrain the formation and evolution of galaxies. Our measurements are based on homogeneous and deep multi-band photometry spanning from the u- to the Ks-band for each cluster and are supported by spectroscopic data from different programs. The galaxy population is separated into quiescent and star-forming galaxies based on their rest-frame U−V and V−J colours. The SMF is compared to that of field galaxies at the same redshifts using data from the COSMOS/UltraVISTA survey. We find that the shape of the SMF of star-forming galaxies does not depend on environment, while the SMF of quiescent galaxies has a significantly steeper low-mass slope in the clusters compared to the field. This indicates that a different quenching mechanism is at play in clusters compared to the field, accentuated by a quenched fraction that is much higher in the clusters. We estimate the environmental quenching efficiency (fEQ), that is, the probability for a galaxy that would normally be star forming in the field to be quenched due to its environment. The fEQ shows no stellar-mass dependence in any environment, but it increases from 40% in the cluster outskirts to ∼90% in the cluster centres. The radial signature of fEQ provides constraints on where the dominant quenching mechanism operates in these clusters and on what timescale. Exploring these using a simple model based on galaxy orbits obtained from an N-body simulation, we find a clear degeneracy between both parameters. For example, the quenching process may either be triggered on a long (∼3 Gyr) timescale at large radii (r  ∼  8 R500), or happen well within 1 Gyr at r <  R500. The radius where quenching is triggered is at least rquench >  0.67 R500 (95%CL). The ICM density at this location (as probed with XMM-Newton) suggests that ram-pressure stripping of the cold gas is a likely cause of quenching. In addition to this cluster-quenching mechanism, we find that 20–32%, depending on the cluster-specific quenching process, of accreted galaxies were already pre-processed (i.e. quenched by the surrounding overdensities) before they fell into the clusters.


1991 ◽  
Vol 148 ◽  
pp. 138-138
Author(s):  
H. R. Butcher

Existing observations of the Magellanic Clouds suggest substantially different star-forming histories for the two systems. The reliability of this conclusion is discussed in the context of the uncertainties and age resolutions of various empirical methods of studying galaxy evolution. An attempt is also made to relate likely evolutionary scenarios for the Clouds to the histories of other Local Group systems, to the evolution seen in galaxies at high redshift, and to possible histories determined by interaction with the Galaxy.


2019 ◽  
Vol 15 (S352) ◽  
pp. 253-265
Author(s):  
Stijn Wuyts ◽  
Natascha M. Förster Schreiber

AbstractResolved observations of star-forming galaxies at cosmic noon with the Hubble Space Telescope and large ground-based facilities provide a view on the spatial distribution of stars, gas and dust, and probe gaseous motions revealing the central gravitational potential and local feedback processes at play. In this paper, we review recent insights gained from such observations, with an emphasis on results obtained through optical/near-infrared imaging and imaging spectroscopy. Their context and implications are documented more fully in a forthcoming review article by Förster Schreiber & Wuyts (in prep).


Sign in / Sign up

Export Citation Format

Share Document