scholarly journals The PN.S ETG survey

2016 ◽  
Vol 12 (S323) ◽  
pp. 279-283 ◽  
Author(s):  
M. Arnaboldi ◽  
C. Pulsoni ◽  
O. Gerhard ◽  

AbstractWe have analyzed the velocity fields in the halos of thirty-three early-type galaxies (ETGs) with planetary nebulae (PNs) as tracers, reaching radii of up to ~8Re. The sample comprises twenty-five galaxies from the Planetary Nebulae Spectrograph (PN.S) ETG survey and eight further galaxies with extended PN velocity data from the literature and new Counter-Dispersed imaging observations. The catalogues from these thirty-three ETGs provide astrometric positions and heliocentric line-of-sight velocities for a total of 8354 extragalactic PNs. All these catalogues are treated homogeneously for the identification of kinematic outliers and the separation between main galaxy/satellites in each galaxy field-of-view. We discuss the rotation velocities, velocity dispersion profiles and radial trends of the specific angular momentum, separating between slow rotators and fast rotators. We compare the properties of the V/σ(R) and σ(R) profiles with predictions of 2D velocity fields from hydro-dynamical cosmological simulations. We briefly mention the possible origin of the quasi-Keplerian steeply decreasing profile galaxies which encompasses about one fourth of the current sample.

2018 ◽  
Vol 620 ◽  
pp. A111 ◽  
Author(s):  
A. Longobardi ◽  
M. Arnaboldi ◽  
O. Gerhard ◽  
C. Pulsoni ◽  
I. Söldner-Rembold

Aims. We present a kinematic study of a sample of 298 planetary nebulas (PNs) in the outer halo of the central Virgo galaxy M 87 (NGC 4486). The line-of-sight velocities of these PNs are used to identify subcomponents, to measure the angular momentum content of the main M 87 halo, and to constrain the orbital distribution of the stars at these large radii. Methods. We use Gaussian mixture modelling to statistically separate distinct velocity components and identify the M 87 smooth halo component, its unrelaxed substructures, and the intra-cluster (IC) PNs. We compute probability weighted velocity and velocity dispersion maps for the smooth halo, and its specific angular momentum profile (λR) and velocity dispersion profile. Results. The classification of the PNs into smooth halo and ICPNs is supported by their different PN luminosity functions. Based on a Kolmogorov–Smirnov (K–S) test, we conclude that the ICPN line-of-sight velocity distribution (LOSVD) is consistent with the LOSVD of the galaxies in Virgo subcluster A. The surface density profile of the ICPNS at 100 kpc radii has a shallow logarithmic slope, −αICL ≃ −0.8, dominating the light at the largest radii. Previous B − V colour and resolved star metallicity data indicate masses for the ICPN progenitor galaxies of a few ×108 M⊙. The angular momentum-related λR profile for the smooth halo remains below 0.1, in the slow rotator regime, out to 135 kpc average ellipse radius (170 kpc major axis distance). Combining the PN velocity dispersion measurements for the M 87 halo with literature data in the central 15 kpc, we obtain a complete velocity dispersion profile out to Ravg = 135 kpc. The σhalo profile decreases from the central 400 km s−1 to about 270 km s−1 at 2–10 kpc, then rises again to ≃300 ± 50 km s−1 at 50–70 kpc, to finally decrease sharply to σhalo ∼ 100 km s−1 at Ravg = 135 kpc. The steeply decreasing outer σhalo profile and the surface density profile of the smooth halo can be reconciled with the circular velocity curve inferred from assuming hydrostatic equilibrium for the hot X-ray gas. Because this rises to νc,X ∼ km s−1 at 200 kpc, the orbit distribution of the smooth M 87 halo is required to change strongly from approximately isotropic within Ravg ∼ 60 kpc to very radially anisotropic at the largest distances probed. Conclusions. The extended LOSVD of the PNs in the M 87 halo allows the identification of several subcomponents: the ICPNs, the “crown” accretion event, and the smooth M 87 halo. In galaxies like M 87, the presence of these subcomponents needs to be taken into account to avoid systematic biases in estimating the total enclosed mass. The dynamical structure inferred from the velocity dispersion profile indicates that the smooth halo of M 87 steepens beyond Ravg = 60 kpc and becomes strongly radially anisotropic, and that the velocity dispersion profile is consistent with the X-ray circular velocity curve at these radii without non-thermal pressure effects.


1993 ◽  
Vol 153 ◽  
pp. 303-308
Author(s):  
H. Izumiura ◽  
T. Ono ◽  
I. Yamamura ◽  
K. Okumura ◽  
T. Onaka ◽  
...  

SiO maser emission from the Bulge IRAS sources has been searched by the v=1, J=1−0 and v=2, J=1—0 transitions to investigate the kinematics of the Galactic Bulge, resulting in a sample of 124 line-of-sight velocities. The rotation velocity, velocity dispersion, and velocity offset at l = 0° for the sample are found to be , and —18.2±9.7 km s−1, respectively (80% confidence interval). Furthermore we find trends for the rotation velocity and velocity dispersion to decrease with distance from the galactic plane. These trends are supported by a larger sample constructed by incorporating other available velocity data on the Bulge IRAS sources. The rotation velocity and velocity dispersion are expressed as 15.6—1.23x|b(deg)| km s−1 deg−1 and 101−3.6x |b(deg)| km s−1, respectively. The implications of the observed quantities are discussed.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 20-25 ◽  
Author(s):  
Lodovico Coccato ◽  

AbstractThe kinematics and dynamical properties of galaxy stellar halos are difficult to measure, given the faint surface brightness that characterizes these regions. Gas-rich systems such as spiral galaxies can be probed using the radio Hi emission. Early-type galaxies contain less gas, therefore alternative kinematic tracers need to be used. Planetary Nebulae (PNe) can be easily detected far out in the halo thanks to their bright [O iii] emission at 5007 Å. It is therefore possible to map the halo kinematics also in early-type galaxies, typically out to 5 effective radii or beyond. Thanks to the recent spectroscopic surveys targeting extra-galactic PNe, we can now rely on few tens of galaxies where the kinematics of the stellar halos are measured. I will discuss the most important results: (a) the relation of the stellar surface brightness and the PNe number density; (b) the velocity and velocity dispersion two-dimensional fields; (c) the radial profiles of angular momentum; and (d) the relation between the derived kinematics physical properties of the host galaxies.


Author(s):  
Lodovico Coccato ◽  

AbstractThe kinematics and dynamical properties of galaxy stellar halos are difficult to measure, given the faint surface brightness that characterizes these regions. Gas-rich systems such as spiral galaxies can be probed using the radio Hi emission. Early-type galaxies contain less gas, therefore alternative kinematic tracers need to be used. Planetary Nebulae (PNe) can be easily detected far out in the halo thanks to their bright [Oiii] emission at 5007 Å. It is therefore possible to map the halo kinematics also in early-type galaxies, typically out to 5 effective radii or beyond. Thanks to the recent spectroscopic surveys targeting extra-galactic PNe, we can now rely on few tens of galaxies where the kinematics of the stellar halos are measured. I will discuss the most important results: (a) the relation of the stellar surface brightness and the PNe number density; (b) the velocity and velocity dispersion two-dimensional fields; (c) the radial profiles of angular momentum; and (d) the relation between the derived kinematics physical properties of the host galaxies.


2014 ◽  
Vol 10 (S311) ◽  
pp. 31-35
Author(s):  
Ortwin Gerhard ◽  
Magda Arnaboldi ◽  
Alessia Longobardi

AbstractThe outer halos of massive early-type galaxies (ETGs) are dark matter dominated and may have formed by accretion of smaller systems during galaxy evolution. Here a brief report is given of some recent work on the kinematics, angular momentum, and mass distributions of simulated ETG halos, and of corresponding properties of observed halos measured with planetary nebulae (PNe) as tracers. In the outermost regions of the Virgo-central galaxy M87, the PN data show that the stellar halo and the co-spatial intracluster light are distinct kinematic components.


2015 ◽  
Vol 11 (S317) ◽  
pp. 190-196 ◽  
Author(s):  
Jean P. Brodie ◽  
Aaron Romanowsky ◽  

AbstractWe use the kinematics of discrete tracers, primarily globular clusters (GCs) and planetary nebulae (PNe), along with measurements of the integrated starlight to explore the assembly histories of early type galaxies. Data for GCs and stars are taken from the SLUGGS wide field, 2-dimensional, chemo-dynamical survey (Brodie et al. 2014). Data for PNe are from the PN.S survey (see contributions by Gerhard and by Arnaboldi, this volume). We find widespread evidence for 2-phase galaxy assembly and intriguing constraints on hierarchical merging under a lambda CDM cosmology.


2020 ◽  
Vol 15 (S359) ◽  
pp. 62-66
Author(s):  
Carlo Cannarozzo ◽  
Carlo Nipoti ◽  
Alessandro Sonnenfeld ◽  
Alexie Leauthaud ◽  
Song Huang ◽  
...  

AbstractThe evolution of the structural and kinematic properties of early-type galaxies (ETGs), their scaling relations, as well as their stellar metallicity and age contain precious information on the assembly history of these systems. We present results on the evolution of the stellar mass-velocity dispersion relation of ETGs, focusing in particular on the effects of some selection criteria used to define ETGs. We also try to shed light on the role that in-situ and ex-situ stellar populations have in massive ETGs, providing a possible explanation of the observed metallicity distributions.


1998 ◽  
Vol 11 (1) ◽  
pp. 574-574
Author(s):  
A.E. Gómez ◽  
S. Grenier ◽  
S. Udry ◽  
M. Haywood ◽  
V. Sabas ◽  
...  

Using Hipparcos parallaxes and proper motions together with radial velocity data and individual ages estimated from isochones, the velocity ellipsoid has been determined as a function of age. On the basis of the available kinematic data two different samples were considered: a first one (7789 stars) for which only tangential velocities were calculated and a second one containing 3104 stars with available U, V and W velocity components and total velocities ≤ 65 km.s-1. The main conclusions are: -Mixing is not complete at about 0.8-1 Gyr. -The shape of the velocity ellipsoid changes with time getting rounder from σu/σv/σ-w = 1/0.63/0.42 ± 0.04 at about 1 Gyr to1/0.7/0.62 ±0.04 at 4-5 Gyr. -The age-velocity-dispersion relation (from the sample with kinematical selection) rises to a maximum, thereafter remaining roughly constant; there is no dynamically significant evolution of the disk after about 4-5 Gyr. -Among the stars with solar metallicities and log(age) > 9.8 two groups are identified: one has typical thin disk characteristics, the other is older than 10 Gyr and lags the LSR at about 40 km.s-1 . -The variation of the tangential velocity with age(without selection on the tangential velocity) shows a discontinuity at about 10 Gyr, which may be attributed to stars typically of the thick disk populations for ages > 10 Gyr.


2009 ◽  
Vol 5 (H15) ◽  
pp. 67-67
Author(s):  
Robert N. Proctor ◽  
Duncan A. Forbes ◽  
Aaron J. Romanowsky ◽  
Jean P. Brodie ◽  
Jay Strader ◽  
...  

We detail an innovative new technique for measuring the 2-D velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h3 and h4) using spectra from Keck DEIMOS multi-object spectroscopic observations. The data are used to reconstruct 2-D rotation velocity maps.


Sign in / Sign up

Export Citation Format

Share Document