scholarly journals RAVE-Gaia and the impact on Galactic archeology

2017 ◽  
Vol 12 (S330) ◽  
pp. 176-180
Author(s):  
Andrea Kunder

AbstractThe new data release (DR5) of the RAdial Velocity Experiment (RAVE) includes radial velocities of 520,781 spectra of 457,588 individual stars, of which 215,590 individual stars are released in the Tycho-Gaia astrometric solution (TGAS) in Gaia DR1. Therefore, RAVE contains the largest TGAS overlap of the recent and ongoing Milky Way spectroscopic surveys. Most of the RAVE stars also contain stellar parameters (effective temperature, surface gravity, overall metallicity), as well as individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni. Combining RAVE with TGAS brings the uncertainties in space velocities down by a factor of 2 for stars in the RAVE volume – 10 km s−1 uncertainties in space velocities are now able to be derived for the majority (70%) of the RAVE-TGAS sample, providing a powerful platform for chemo-dynamic analyses of the Milky Way. Here we discuss the RAVE-TGAS impact on Galactic archaeology as well as how the Gaia parallaxes can be used to break degeneracies within the RAVE spectral regime for an even better return in the derivation of stellar parameters and abundances.

2017 ◽  
Vol 14 (S339) ◽  
pp. 345-348
Author(s):  
H. Yuan ◽  
Y. Zhang ◽  
Y. Lei ◽  
Y. Dong ◽  
Z. Bai ◽  
...  

AbstractWith so many spectroscopic surveys, both past and upcoming, such as SDSS and LAMOST, the number of accessible stellar spectra is continuously increasing. There is therefore a great need for automated procedures that will derive estimates of stellar parameters. Working with spectra from SDSS and LAMOST, we put forward a hybrid approach of Kernel Principal Component Analysis (KPCA) and Support Vector Machine (SVM) to determine the stellar atmospheric parameters effective temperature, surface gravity and metallicity. For stars with both APOGEE and LAMOST spectra, we adopt the LAMOST spectra and APOGEE parameters, and then use KPCA to reduce dimensionality and SVM to measure parameters. Our method provides reliable and precise results; for example, the standard deviation of effective temperature, surface gravity and metallicity for the test sample come to approximately 47–75 K, 0.11–0.15 dex and 0.06–0.075 dex, respectively. The impact of the signal:noise ratio of the observations upon the accuracy of the results is also investigated.


2019 ◽  
Vol 622 ◽  
pp. A205 ◽  
Author(s):  
D. Katz ◽  
P. Sartoretti ◽  
M. Cropper ◽  
P. Panuzzo ◽  
G. M. Seabroke ◽  
...  

Context. For Gaia DR2, 280 million spectra collected by the Radial Velocity Spectrometer instrument on board Gaia were processed, and median radial velocities were derived for 9.8 million sources brighter than GRVS = 12 mag. Aims. This paper describes the validation and properties of the median radial velocities published in Gaia DR2. Methods. Quality tests and filters were applied to select those of the 9.8 million radial velocities that have the quality to be published in Gaia DR2. The accuracy of the selected sample was assessed with respect to ground-based catalogues. Its precision was estimated using both ground-based catalogues and the distribution of the Gaia radial velocity uncertainties. Results. Gaia DR2 contains median radial velocities for 7 224 631 stars, with Teff in the range [3550, 6900] K, which successfully passed the quality tests. The published median radial velocities provide a full-sky coverage and are complete with respect to the astrometric data to within 77.2% (for G ≤ 12.5 mag). The median radial velocity residuals with respect to the ground-based surveys vary from one catalogue to another, but do not exceed a few 100 m s−1. In addition, the Gaia radial velocities show a positive trend as a function of magnitude, which starts around GRVS ~ 9 mag and reaches about + 500 m s−1 at GRVS = 11.75 mag. The origin of the trend is under investigation, with the aim to correct for it in Gaia DR3. The overall precision, estimated from the median of the Gaia radial velocity uncertainties, is 1.05 km s−1. The radial velocity precision is a function of many parameters, in particular, the magnitude and effective temperature. For bright stars, GRVS ∈ [4, 8] mag, the precision, estimated using the full dataset, is in the range 220–350 m s−1, which is about three to five times more precise than the pre-launch specification of 1 km s−1. At the faint end, GRVS = 11.75 mag, the precisions for Teff = 5000 and 6500 K are 1.4 and 3.7 km s−1, respectively.


Author(s):  
Ö. Önal Taş ◽  
S. Bilir ◽  
G. M. Seabroke ◽  
S. Karaali ◽  
S. Ak ◽  
...  

AbstractWe investigate the Milky Way Galaxy’s radial and vertical metallicity gradients using a sample of 47 406 red clump stars from the RAdial Velocity Experiment Data Release 4. Distances are calculated by adopting Ks-band absolute magnitude as −1.54±0.04 mag for the sample. The metallicity gradients are calculated with their current orbital positions (Rgc and Z) and with their orbital properties (Rm and zmax): d[Fe/H]/dRgc = −0.047±0.003 dex kpc−1 for |Z| ≤ 0.5 kpc and d[Fe/H]/dRm = −0.025±0.002 dex kpc−1 for zmax ≤ 0.5 kpc. This reaffirms the radial metallicity gradient in the thin disc but highlights that gradients are sensitive to the selection effects caused by the difference between Rgc and Rm. The radial gradient is flat in the distance interval 0.5-1 kpc from the plane and then becomes positive greater than 1 kpc from the plane. The radial metallicity gradients are also eccentricity dependent. We showed that d[Fe/H]/dRm = −0.089±0.010, −0.073±0.007, −0.053±0.004 and −0.044±0.002 dex kpc−1 for ep ≤ 0.05, ep ≤ 0.07, ep ≤ 0.10 and ep ≤ 0.20 sub-samples, respectively, in the distance interval zmax ≤ 0.5 kpc. Similar trend is found for vertical metallicity gradients. Both the radial and vertical metallicity gradients are found to become shallower as the eccentricity of the sample increases. These findings can be used to constrain different formation scenarios of the thick and thin discs.


2017 ◽  
Vol 13 (S334) ◽  
pp. 302-303
Author(s):  
Guillaume Guiglion ◽  

AbstractIn the context of the Radial Velocity Experiment (RAVE, Steinmetz et al. 2006), we present chemical abundances derived with the pipeline GAUGUIN. Based of 520 701 RAVE stars with medium resolution (R~7 500) spectra and stellar atmospheric parameters of the fifth Data Release, the analysis is performed around the infrared Ca-triple domain for 6 chemical elements: Mg, Ni, Si, Ti, Fe and Al. We discuss here the reliability of the chemical abundances provided by GAUGUIN, and the implications for the future Data Release 6 of the RAVE Survey. We also present elemental abundance patterns of Milky Way components based of kinematical criteria.


2017 ◽  
Vol 13 (S334) ◽  
pp. 281-282
Author(s):  
Ioana Ciucă ◽  
Daisuke Kawata ◽  
Jane Lin ◽  
Luca Casagrande ◽  
George Seabroke ◽  
...  

AbstractWe investigate the vertical metallicity gradients of five mono-age stellar populations between 0 and 11 Gyr for a sample of 18 435 dwarf stars selected from the cross-matched Tycho-Gaia Astrometric Solution (TGAS) and RAdial Velocity Experiment (RAVE) Data Release 5. We find a correlation between the vertical metallicity gradients and age, with no vertical metallicity gradient in the youngest population and an increasingly steeper negative vertical metallicity gradient for the older stellar populations. We also find that the intrinsic dispersion in metallicity increases steadily with age. Our results are consistent with a scenario that thin disk stars formed from a flaring thin star-forming disk.


2012 ◽  
Vol 428 (4) ◽  
pp. 3660-3670 ◽  
Author(s):  
K. Freeman ◽  
M. Ness ◽  
E. Wylie-de-Boer ◽  
E. Athanassoula ◽  
J. Bland-Hawthorn ◽  
...  

Abstract We describe the motivation, field locations and stellar selection for the Abundances and Radial velocity Galactic Origins Survey (ARGOS) spectroscopic survey of 28 000 stars in the bulge and inner disc of the Milky Way galaxy across latitudes of b = −5° to −10°. The primary goal of this survey is to constrain the formation processes of the bulge and establish whether it is predominantly a merger or instability remnant. From the spectra (R = 11 000), we have measured radial velocities and determined stellar parameters, including metallicities and [α/Fe] ratios. Distances were estimated from the derived stellar parameters and about 14 000 stars are red giants within 3.5 kpc of the Galactic Centre. In this paper, we present the observations and analysis methods. Subsequent papers (III and IV) will discuss the stellar metallicity distribution and kinematics of the Galactic bulge and inner disc, and the implications for the formation of the bulge.


2020 ◽  
Vol 160 (2) ◽  
pp. 82 ◽  
Author(s):  
Matthias Steinmetz ◽  
Gal Matijevič ◽  
Harry Enke ◽  
Tomaž Zwitter ◽  
Guillaume Guiglion ◽  
...  

1987 ◽  
Vol 122 ◽  
pp. 367-367
Author(s):  
Thomas A. Fleming ◽  
Isabella Gioia ◽  
Tommaso Maccacaro

We are currently working with a statistically complete, unbiased sample of 125 x-ray-bright stars which were serendipitously detected by the Einstein Observatory Medium Sensitivity Survey (MSS). A program of optical spectroscopy and photometry is currently underway to measure radial velocities, distances, and such stellar parameters as rotation, temperature, surface gravity, metallicity, chromospheric activity, and age and to correlate them with absolute x-ray luminosity. So far, the majority of the sample (which was defined at |bII| > 20o) appears to be composed of either flare stars (e.g. dMe, dKe) or active binary systems (e.g. cataclysmic variables, RS CVn, W UMa).


1964 ◽  
Vol 20 ◽  
pp. 147-155 ◽  
Author(s):  
B. J. Bok

It has become clear in recent years that the spiral features of our Galaxy — like those of all galaxies — are of recent origin and are presumably short-lived phenomena. To trace them optically, we need to confine ourselves to concentrations in the interstellar gas and to stars and star groupings recently formed from these. We are hence limited primarily to OB associations and star clusters in which the earliest spectral types for the stars are not later than B2, preferably O5 to B1. It is most important that radial velocities be measured for a fair sampling of these stars, especially so for directions in which the radial velocity effects due to galactic rotation vary appreciably with distance. Radial velocities of the stars in question and those found from interstellar absorption lines are not only useful as indicators of distance, but they are very much needed for the identification of star groups and their associated HI clouds, found by 21-cm techniques. They assist also in the study of HII regions, which can now be located by either radio or optical methods.


Sign in / Sign up

Export Citation Format

Share Document