Ubiquitous millimeter-wavelength Class I methanol masers associated with massive (proto)stellar outflows: ALMA and SMA results

2017 ◽  
Vol 13 (S336) ◽  
pp. 281-282
Author(s):  
C. J. Cyganowski ◽  
D. Hannaway ◽  
C. L. Brogan ◽  
T. R. Hunter ◽  
Q. Zhang

AbstractWe report the discovery of widespread millimeter-wavelength Class I methanol maser emission associated with protostellar molecular outflows in the massive (proto)cluster G11.92−0.61. Our ~0.5″-resolution SMA and ALMA observations of the 229 GHz and 278 GHz Class I transitions reveal seven and twelve candidate masers, respectively: all 229 GHz masers have 278 GHz counterparts, and five are also coincident with 44 GHz Class I masers previously detected with the VLA. For paired masers, the peak intensities at 229 GHz and 278 GHz are correlated. We also find tentative evidence for a correlation between the strength of millimeter-wavelength Class I maser emission and the energy of the associated molecular outflow.

2017 ◽  
Vol 13 (S336) ◽  
pp. 105-108
Author(s):  
Tiege P. McCarthy ◽  
Simon P. Ellingsen ◽  
Xi Chen ◽  
Shari L. Breen ◽  
Maxim A. Voronkov ◽  
...  

AbstractWe have detected maser emission from the 36.2 GHz (4−1 → 30E) methanol transition towards NGC 4945. This emission has been observed in two separate epochs and is approximately five orders of magnitude more luminous than typical emission from this transition within our Galaxy. NGC 4945 is only the fourth extragalactic source observed hosting class I methanol maser emission. Extragalactic class I methanol masers do not appear to be simply highly-luminous variants of their galactic counterparts and instead appear to trace large-scale regions where low-velocity shocks are present in molecular gas.


2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


2013 ◽  
Vol 9 (S303) ◽  
pp. 147-149
Author(s):  
L. O. Sjouwerman ◽  
Y. M. Pihlström

AbstractWe report on the detection of 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) complex with the Karl G. Jansky Very Large Array (VLA). These VLA observations show that the Sgr A complex harbors at least three different maser tracers of shocked regions in the radio regime. The 44 GHz masers correlate with the positions and velocities of previously detected 36 GHz CH3OH masers, but less with 1720 MHz OH masers. Our detections agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under even cooler and less dense conditions. We speculate that the geometry of the 36 GHz masers outlines the current location of a shock front.


2018 ◽  
Vol 867 (1) ◽  
pp. L4 ◽  
Author(s):  
Tiege P. McCarthy ◽  
Simon P. Ellingsen ◽  
Shari L. Breen ◽  
Maxim A. Voronkov ◽  
Xi Chen

2018 ◽  
Vol 14 (A30) ◽  
pp. 140-140
Author(s):  
Emmanuel Momjian ◽  
Anuj P. Sarma

AbstractWe report the detection of the Zeeman effect in the 44 GHz Class I methanol maser line toward the star forming region DR21W. The 44 GHz methanol masers in this source occur in a ∼3” linear structure that runs from northwest to southeast, with the two dominant components at each end, and several weaker maser components in between. Toward a 93 Jy maser in the dominant northwestern component, we find a significant Zeeman detection of −23.4 ± 3.2 Hz. If we use the recently published result of Lankhaar et al. (2018) that the F=5-4 hyperfine transition is responsible for the 44 GHz methanol maser line, then their value of z = −0.92 Hz mG−1 yields a line-of-sight magnetic field of Blos =25.4 ± 3.5 mG. If Class I methanol masers are pumped in high density regions with n∼107–8 cm−3, then magnetic fields in these maser regions should be a few to several tens of mG. Therefore, our result in DR21W is certainly consistent with the expected values.Using the above noted splitting factor in past Zeeman effect detections in Class I methanol masers reported by Sarma & Momjian (2011) and Momjian & Sarma (2017) in the star forming regions OMC-2 and DR21(OH) result in Blos values of 20.0 ± 1.2 mG and 58.2 ± 2.9 mG, respectively. These are also consistent with the expected values.


2017 ◽  
Vol 13 (S336) ◽  
pp. 57-58 ◽  
Author(s):  
A. M. Sobolev ◽  
S. Yu. Parfenov

AbstractIn the current paper we describe results of an extensive and refined analysis which shows that the beaming leads to considerable changes in the model line ratios and brightness estimates. For example, beaming shifts the locus of the brightest masers to the lower values of the gas densities. Recent theoretical paper by Leurini et al. (2016) presented extensive consideration of the Class I methanol maser (MMI) pumping. Their study allowed to distinguish only 3 of 4 MMI pumping regimes found in Sobolev et al. (2005) and Sobolev et al. (2007) on the basis of analysis of observational data combined with theoretical considerations. The regime when the line from the J−2 − (J − 1)−1E series is the brightest was missing in Leurini et al. (2016) results. This may be explained by considering the fact that the authors did not take into account considerable beaming effects.


1998 ◽  
Vol 164 ◽  
pp. 375-376
Author(s):  
S. P. Ellingsen ◽  
P.M. McCulloch ◽  
P. J. Diamond ◽  
R. P. Norris

AbstractWe have used the VLBA to image the 12.2 GHz (20-3−1 E) masing transition of methanol toward the massive star formation region G345.01+1.79. The maser spots are distributed in a curved structure with a near monotonic velocity distribution along the curve. The cluster of maser emission covers an area of approximately 200 milli-arcseconds in right ascension and 70 milli-arcseconds in declination.Comparison of the positions of the 12.2 GHz methanol maser spots in G345.01+1.79 as determined from the 1995 VLBA observations with 1988 Parkes-Tidbinbilla Interferometer observations shows that the relative positions of the maser spots detected in both epochs has changed by less than 5 milli-arcseconds during that interval. Assuming a distance of 2.3 kpc to G345.01+1.79 implies an upper limit on the relative tangential velocities of the maser spots of 7 km s−1.


2017 ◽  
Vol 846 (2) ◽  
pp. 156 ◽  
Author(s):  
Tiege P McCarthy ◽  
Simon P. Ellingsen ◽  
Xi Chen ◽  
Shari L. Breen ◽  
Maxim A. Voronkov ◽  
...  

2012 ◽  
Vol 8 (S287) ◽  
pp. 449-454
Author(s):  
Loránt O. Sjouwerman ◽  
Ylva M. Pihlström

AbstractWe report on 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) region with the Expanded Very Large Array (EVLA). At least three different maser transitions tracing shocked regions in the cm-wave radio regime can be found in Sgr A. 44 GHz masers correlate with the positions and velocities of 36 GHz CH3OH masers, but the methanol masers correlate less with 1720 MHz OH masers. Our results agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under cooler or denser conditions. We speculate that the geometry of the bright 36 GHz masers in Sgr A East outlines the location of a SNR shock front.


2007 ◽  
Vol 3 (S242) ◽  
pp. 184-185
Author(s):  
D. Wong-McSweeney ◽  
G. A. Fuller ◽  
S. Etoka

AbstractHigh angular resolution observations are essential for understanding the nature of maser emission and the sources which excite it. Here we present preliminary results from MERLIN observations of three methanol masers from the Toruń survey. These MERLIN observations are being analysed as part of the interferometric component of the Methanol Multibeam (MMB) Survey which is surveying the Galactic plane at |b|≤2° for 6.67 GHz methanol maser sources.


Sign in / Sign up

Export Citation Format

Share Document