Pumping regimes of Class I methanol masers

2017 ◽  
Vol 13 (S336) ◽  
pp. 57-58 ◽  
Author(s):  
A. M. Sobolev ◽  
S. Yu. Parfenov

AbstractIn the current paper we describe results of an extensive and refined analysis which shows that the beaming leads to considerable changes in the model line ratios and brightness estimates. For example, beaming shifts the locus of the brightest masers to the lower values of the gas densities. Recent theoretical paper by Leurini et al. (2016) presented extensive consideration of the Class I methanol maser (MMI) pumping. Their study allowed to distinguish only 3 of 4 MMI pumping regimes found in Sobolev et al. (2005) and Sobolev et al. (2007) on the basis of analysis of observational data combined with theoretical considerations. The regime when the line from the J−2 − (J − 1)−1E series is the brightest was missing in Leurini et al. (2016) results. This may be explained by considering the fact that the authors did not take into account considerable beaming effects.

2017 ◽  
Vol 13 (S336) ◽  
pp. 105-108
Author(s):  
Tiege P. McCarthy ◽  
Simon P. Ellingsen ◽  
Xi Chen ◽  
Shari L. Breen ◽  
Maxim A. Voronkov ◽  
...  

AbstractWe have detected maser emission from the 36.2 GHz (4−1 → 30E) methanol transition towards NGC 4945. This emission has been observed in two separate epochs and is approximately five orders of magnitude more luminous than typical emission from this transition within our Galaxy. NGC 4945 is only the fourth extragalactic source observed hosting class I methanol maser emission. Extragalactic class I methanol masers do not appear to be simply highly-luminous variants of their galactic counterparts and instead appear to trace large-scale regions where low-velocity shocks are present in molecular gas.


2018 ◽  
Vol 14 (A30) ◽  
pp. 140-140
Author(s):  
Emmanuel Momjian ◽  
Anuj P. Sarma

AbstractWe report the detection of the Zeeman effect in the 44 GHz Class I methanol maser line toward the star forming region DR21W. The 44 GHz methanol masers in this source occur in a ∼3” linear structure that runs from northwest to southeast, with the two dominant components at each end, and several weaker maser components in between. Toward a 93 Jy maser in the dominant northwestern component, we find a significant Zeeman detection of −23.4 ± 3.2 Hz. If we use the recently published result of Lankhaar et al. (2018) that the F=5-4 hyperfine transition is responsible for the 44 GHz methanol maser line, then their value of z = −0.92 Hz mG−1 yields a line-of-sight magnetic field of Blos =25.4 ± 3.5 mG. If Class I methanol masers are pumped in high density regions with n∼107–8 cm−3, then magnetic fields in these maser regions should be a few to several tens of mG. Therefore, our result in DR21W is certainly consistent with the expected values.Using the above noted splitting factor in past Zeeman effect detections in Class I methanol masers reported by Sarma & Momjian (2011) and Momjian & Sarma (2017) in the star forming regions OMC-2 and DR21(OH) result in Blos values of 20.0 ± 1.2 mG and 58.2 ± 2.9 mG, respectively. These are also consistent with the expected values.


2012 ◽  
Vol 8 (S287) ◽  
pp. 133-140
Author(s):  
S. E. Kurtz

AbstractClass I 44 GHz methanol masers are not as well-known, as common, or as bright as their more famous Class II cousins at 6.7 and 12.2 GHz. Nevertheless, the 44 GHz masers are commonly found in high-mass star forming regions. At times they appear to trace dynamically important phenomena; at other times they show no obvious link to the star formation process. Here, we summarize the major observational efforts to date, including both dedicated surveys and collateral observations. The principal results are presented, some that were expected, and others that were unexpected.


2012 ◽  
Vol 8 (S287) ◽  
pp. 433-440 ◽  
Author(s):  
M. A. Voronkov ◽  
J. L. Caswell ◽  
S. P. Ellingsen ◽  
S. L. Breen ◽  
T. R. Britton ◽  
...  

AbstractWe review properties of all known collisionally pumped (class I) methanol maser series based on observations with the Australia Telescope Compact Array (ATCA) and the Mopra radio telescope. Masers at 36, 84, 44 and 95 GHz are most widespread, while 9.9, 25, 23.4 and 104 GHz masers are much rarer, tracing the most energetic shocks. A survey of many southern masers at 36 and 44 GHz suggests that these two transitions are highly complementary. The 23.4 GHz maser is a new type of rare class I methanol maser, detected only in two high-mass star-forming regions, G357.97-0.16 and G343.12-0.06, and showing a behaviour similar to 9.9, 25 and 104 GHz masers. Interferometric positions suggest that shocks responsible for class I masers could arise from a range of phenomena, not merely an outflow scenario. For example, some masers might be caused by interaction of an expanding Hii region with its surrounding molecular cloud. This has implications for evolutionary sequences incorporating class I methanol masers if they appear more than once during the evolution of the star-forming region. We also make predictions for candidate maser transitions in the ALMA frequency range.


2017 ◽  
Vol 13 (S336) ◽  
pp. 317-318
Author(s):  
Nichol Cunningham ◽  
Gary Fuller ◽  
Adam Avison ◽  
Shari Breen

AbstractWe present the initial results from a class I 44-GHz methanol maser follow-up survey, observed with the MOPRA telescope, towards 272 sources from the Methanol Multi-beam survey (MMB). Over half (∼60%) of the 6.7 GHz class II MMB maser sources are associated with a class I 44-GHz methanol maser at a greater than 5σ detection level. We find that class II MMB masers sources with an associated class I methanol maser have stronger peak fluxes compared to regions without an associated class I maser. Furthermore, as part of the MOPRA follow-up observations we simultaneously observed SiO emission which is a known tracer of shocks and outflows in massive star forming regions. The presence of SiO emission, and potentially outflows, is found to be strongly associated with the detection of class I maser emission in these regions.


2002 ◽  
Vol 206 ◽  
pp. 179-182 ◽  
Author(s):  
Andrej M. Sobolev ◽  
Andrei B. Ostrovskii ◽  
Alexey V. Malyshev ◽  
Dinah M. Cragg ◽  
Peter D. Godfrey ◽  
...  

Current models of class II methanol masers are able to describe the brightnesses of the strongest masers and provide a basis for explaining observed line ratios. Determination of the physical parameters in the source requires observational data in many maser transitions. In order to provide observational constraints for models we searched for and detected 7 new methanol masers. This allowed us to constrain the physical parameters of the 3 sources with the greatest number of detected methanol maser lines: W3(OH), NGC6334F, and G345.01 + 1.79. The models accurately account for the fluxes of the bulk of the detected maser lines. Remaining discrepancies most probably reflect the fact that the most prominent components of the different maser lines are formed under different conditions. This is supported by comparison of the line profiles. We outline directions for future studies in the field.


2015 ◽  
Vol 221 (1) ◽  
pp. 6 ◽  
Author(s):  
Hyunwoo Kang ◽  
Kee-Tae Kim ◽  
Do-Young Byun ◽  
Seokho Lee ◽  
Yong-Sun Park

2017 ◽  
Vol 13 (S336) ◽  
pp. 281-282
Author(s):  
C. J. Cyganowski ◽  
D. Hannaway ◽  
C. L. Brogan ◽  
T. R. Hunter ◽  
Q. Zhang

AbstractWe report the discovery of widespread millimeter-wavelength Class I methanol maser emission associated with protostellar molecular outflows in the massive (proto)cluster G11.92−0.61. Our ~0.5″-resolution SMA and ALMA observations of the 229 GHz and 278 GHz Class I transitions reveal seven and twelve candidate masers, respectively: all 229 GHz masers have 278 GHz counterparts, and five are also coincident with 44 GHz Class I masers previously detected with the VLA. For paired masers, the peak intensities at 229 GHz and 278 GHz are correlated. We also find tentative evidence for a correlation between the strength of millimeter-wavelength Class I maser emission and the energy of the associated molecular outflow.


2012 ◽  
Vol 8 (S287) ◽  
pp. 284-285 ◽  
Author(s):  
Do-Young Byun ◽  
Kee-Tae Kim ◽  
Jae-Han Bae

AbstractThe Class II 6.7-GHz methanol maser is a tracer of high mass young stellar objects. We present results of a 44-GHz class I methanol maser and 22-GHz water maser survey using the KVN (Korean VLBI Network) 21-m single dish radio telescopes towards 284 6.7-GHz maser sites. Class I methanol maser and water maser emission is detected towards 116 (41%) and 136 (48%) sources, respectively. About 50 sources have a peak flux density higher than 10 Jy at 44-GHz. They are candidates for VLBI studies using the KVN.


2017 ◽  
Vol 13 (S336) ◽  
pp. 99-104
Author(s):  
Xi Chen ◽  
Simon P. Ellingsen

AbstractWe report progress on research relating to 36.2 GHz extragalactic class I methanol masers, including a review of published work and new observations at high angular resolution. These observations reveal that extragalactic class I masers are excited in shocked gas and maybe associated with starbursts, galactic-scale outflows from active galactic nuclei (AGNs) feedback, or the inner-end region of the galactic bar. The current observational results suggests that extragalactic class I methanol masers provide a new probe for starbursts and feedback in active galaxies.


Sign in / Sign up

Export Citation Format

Share Document