Analysis of bipolar outflow parameters, magnetic fields and maser activity relationship in EGO sources

2017 ◽  
Vol 13 (S336) ◽  
pp. 63-64
Author(s):  
O. S. Bayandina ◽  
I. E. Val’tts ◽  
P. Colom ◽  
S. E. Kurtz ◽  
G. M. Rudnitskij ◽  
...  

AbstractThe interferometric and single-dish observations of the Extended Green Objects sample have been carried out in order to check the possible common pumping mechanism of class I methanol maser (cIMM) and OH(1720 MHz) maser and their identification with a front of bipolar outflow as a source of interstellar shock stimulating collisional pumping of the molecules. High spatial and spectral resolution observations of OH masers allow us to investigate structure, kinematics, and magnetic field configuration of the inner region of the source, i.e., the outflow ejection region. Analysis of magnetic field strength in a disk area is crucial to understanding of the outflow origin.

1968 ◽  
Vol 35 ◽  
pp. 202-210
Author(s):  
O. Kjeldseth Moe

During 1963–67 observations of the magnetic fields in sunspots have been obtained at the Oslo Solar Observatory. For the largest spots the detailed distribution of the magnetic-field strength is found. Based on calculations of line profiles made by the author (Kjeldseth Moe, 1967) also the direction of the magnetic field is derived. Observations of the magnetic field of the same spot at several positions on the solar disk give further information regarding the magnetic-field configuration. Our results are in fair agreement with those of Bumba (1962).


1973 ◽  
Vol 9 (1) ◽  
pp. 1-15 ◽  
Author(s):  
E. E. Nolting ◽  
P. E. Jindra ◽  
D. R. Wells

Detailed measurements of the trapped magnetic fields and currents in plasma structures generated by conical theta-pinches are reported. Studies of these structures interacting with a magnetic barrier, and with each other in a collision at the centre of a magnetic mirror, are reported. The magnetic well formed by the collision has been studied by simultaneous use of several diagnostic techniques. The measurements are in agreement with a force-free, collinear magnetic field configuration (Wells 1972). Arguments relating superposability and collinearity of flow fields to these observations are given.


2010 ◽  
Vol 77 (4) ◽  
pp. 537-545 ◽  
Author(s):  
A. B. ALEXANDER ◽  
C. T. RAYNOR ◽  
D. L. WIGGINS ◽  
M. K. ROBINSON ◽  
C. C. AKPOVO ◽  
...  

AbstractWhen the krypton plasma in a DC glow discharge tube is exposed to an axial magnetic field, the turbulent energy and the characteristic dominant mode in the turbulent fluctuations are systematically and unexpectedly reduced with increasing magnetic field strength. When the index measuring the rate of transfer of energy through fluctuation scales is monitored, a lambda-like dependence on turbulent energy is routinely observed in all magnetic fields. From this, a critical turbulent energy is identified, which also decreases with increasing magnetic field strength.


1990 ◽  
Vol 140 ◽  
pp. 233-234
Author(s):  
J. Stryczynski

From the literature we collected radio and magnetic field data for the ANS spiral galaxies. We suggest that the groups of objects, as revealed in the UV range, do not differ in magnetic field strength, although statistics of the sample are very poor.


1990 ◽  
Vol 140 ◽  
pp. 54-54
Author(s):  
R.R. Andreassian ◽  
A.N. Makarov

The present paper is devoted to a study of the magnetic field configuration of our Galaxy based on Faraday rotation measures (RM) of 185 pulsars and 802 extragalactic radio sources. RM data of pulsars located near the plane of the Galaxy are used for the study of magnetic fields in neighbouring spiral arms. For the distribution of spiral arms the well-known model of Georgelin and Georgelin (1976) is used. The calculations show (for details see Andreassian and Makarov, 1987, 1989) that in the Perseus spiral arm and the local Orion arm the magnetic fields have approximately the same directions (lo;bo) ≈ (80°;0°), while in the Sagittarius-Carina arm the magnetic field has an opposite direction.


2018 ◽  
Vol 84 (5) ◽  
Author(s):  
O. Seemann ◽  
I. Be’ery ◽  
A. Fisher

An increase in symmetry is observed for a low density non-collisional plasma, in a simple magnetic mirror machine, due to the application of external oscillating magnetic fields of 1.5 MHz frequency. The increase in symmetry is attributed to an increase in stability of the flute mode and is dependent on the field’s polarization and trap magnetic field strength.


2019 ◽  
Vol 86 (3) ◽  
Author(s):  
Daniel Pfeiffer ◽  
Dirk Schüler

ABSTRACT The alphaproteobacterium Magnetospirillum gryphiswaldense has the intriguing ability to navigate within magnetic fields, a behavior named magnetotaxis, governed by the formation of magnetosomes, intracellular membrane-enveloped crystals of magnetite. Magnetosomes are aligned in chains along the cell’s motility axis by a dedicated multipart cytoskeleton (“magnetoskeleton”); however, precise estimates of its significance for magnetotaxis have not been reported. Here, we estimated the alignment of strains deficient in various magnetoskeletal constituents by live-cell motility tracking within defined magnetic fields ranging from 50 μT (reflecting the geomagnetic field) up to 400 μT. Motility tracking revealed that ΔmamY and ΔmamK strains (which assemble mispositioned and fragmented chains, respectively) are partially impaired in magnetotaxis, with approximately equal contributions of both proteins. This impairment was reflected by a required magnetic field strength of 200 μT to achieve a similar degree of alignment as for the wild-type strain in a 50-μT magnetic field. In contrast, the ΔmamJ strain, which predominantly forms clusters of magnetosomes, was only weakly aligned under any of the tested field conditions and could barely be distinguished from a nonmagnetic mutant. Most findings were corroborated by a soft agar swimming assay to analyze magnetotaxis based on the degree of distortion of swim halos formed in magnetic fields. Motility tracking further revealed that swimming speeds of M. gryphiswaldense are highest within the field strength equaling the geomagnetic field. In conclusion, magnetic properties and intracellular positioning of magnetosomes by a dedicated magnetoskeleton are required and optimized for bacterial magnetotaxis and most efficient locomotion within the geomagnetic field. IMPORTANCE In Magnetospirillum gryphiswaldense, magnetosomes are aligned in quasi-linear chains in a helical cell by a complex cytoskeletal network, including the actin-like MamK and adapter MamJ for magnetosome chain concatenation and segregation and MamY to position magnetosome chains along the shortest cellular axis of motility. Magnetosome chain positioning is assumed to be required for efficient magnetic navigation; however, the significance and contribution of all key constituents have not been quantified within defined and weak magnetic fields reflecting the geomagnetic field. Employing two different motility-based methods to consider the flagellum-mediated propulsion of cells, we depict individual benefits of all magnetoskeletal constituents for magnetotaxis. Whereas lack of mamJ resulted almost in an inability to align cells in weak magnetic fields, an approximately 4-fold-increased magnetic field strength was required to compensate for the loss of mamK or mamY. In summary, the magnetoskeleton and optimal positioning of magnetosome chains are required for efficient magnetotaxis.


1931 ◽  
Vol 27 (3) ◽  
pp. 481-489
Author(s):  
L. G. Vedy ◽  
A. F. Wilkins

A portable apparatus is described which is capable of measuring directly, by means of a loop aerial, the magnetic field in an electromagnetic wave. Accurate measurements are possible of magnetic fields corresponding to field strengths of 0·2 millivolts per metre. Special means of providing small known calibrating E. M. F. S are described. The apparatus can be used to measure signals over the range 6 microvolts to 300 millivolts. Used in conjunction with a small portable vertical aerial, field strengths down to 2 microvolts per metre can be measured.


2012 ◽  
Vol 10 (H16) ◽  
pp. 399-399 ◽  
Author(s):  
Marita Krause

The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 ± 50 pc for the thin disk and 1.8 ± 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime tsyn at a single frequency is proportional to the total magnetic field strength Bt−1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as vCR = hCR/tsyn = 2 hz/tsyn, where hCR and hz are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: vCR∝ Bt1.5 ∝ SFR≈ 0.5 (Niklas & Beck 1997).


Sign in / Sign up

Export Citation Format

Share Document